Chinese Journal of Dermatology ›› 2025, Vol. 58 ›› Issue (8): 715-728.doi: 10.35541/cjd.20250136
• Commentary • Previous Articles Next Articles
Lu Qianjin, Cao Shumei, Jiang Jiao
Received:
2025-03-17
Revised:
2025-06-16
Online:
2025-08-15
Published:
2025-08-05
Contact:
Lu Qianjin
E-mail:qianlu5860@pumcderm.cams.cn
Supported by:
Lu Qianjin, Cao Shumei, Jiang Jiao. Lupus erythematosus research: current status and challenges[J]. Chinese Journal of Dermatology, 2025, 58(8): 715-728.doi:10.35541/cjd.20250136
[1] | Tian J, Zhang D, Yao X, et al. Global epidemiology of systemic lupus erythematosus: a comprehensive systematic analysis and modelling study[J]. Ann Rheum Dis, 2023,82(3):351⁃356. doi: 10.1136/ard⁃2022⁃223035. |
[2] | Li M, Li C, Cao M, et al. Incidence and prevalence of systemic lupus erythematosus in urban China, 2013⁃2017: A nationwide population⁃based study[J]. Sci Bull (Beijing), 2024,69(19):3089⁃3097. doi: 10.1016/j.scib.2024.04.075. |
[3] | Li M, Wang Y, Zhao J, et al. Chinese SLE Treatment and Research Group (CSTAR) registry 2009⁃2019: major clinical characteristics of chinese patients with systemic lupus erythematosus[J]. Rheumatol Immunol Res, 2021,2(1):43⁃47. doi: 10.2478/rir⁃2021⁃0001. |
[4] | Barber M, Drenkard C, Falasinnu T, et al. Global epidemiology of systemic lupus erythematosus[J]. Nat Rev Rheumatol, 2021,17(9):515⁃532. doi: 10.1038/s41584⁃021⁃00668⁃1. |
[5] | Buie J, McMillan E, Kirby J, et al. Disparities in lupus and the role of social determinants of health: current state of knowledge and directions for future research[J]. ACR Open Rheumatol, 2023,5(9):454⁃464. doi: 10.1002/acr2.11590. |
[6] | Crow MK. Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets[J]. Ann Rheum Dis, 2023,82(8):999⁃1014. doi: 10.1136/ard⁃2022⁃223741. |
[7] | Wang YF, Zhang Y, Lin Z, et al. Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups[J]. Nat Commun, 2021,12(1):772. doi: 10.1038/s41467⁃021⁃21049⁃y. |
[8] | Deng Y, Zheng Y, Li D, et al. Expression characteristics of interferon⁃stimulated genes and possible regulatory mechanisms in lupus patients using transcriptomics analyses[J]. EBioMedicine, 2021,70:103477. doi: 10.1016/j.ebiom.2021.103477. |
[9] | Jiang J, Zhao M, Chang C, et al. Type I interferons in the pathogenesis and treatment of autoimmune diseases[J]. Clin Rev Allergy Immunol, 2020,59(2):248⁃272. doi: 10.1007/s12016⁃020⁃08798⁃2. |
[10] | Souyris M, Cenac C, Azar P, et al. TLR7 escapes X chromosome inactivation in immune cells[J]. Sci Immunol, 2018,3(19):eaap8855 [pii]. doi: 10.1126/sciimmunol.aap8855. |
[11] | Lu Q, Wu A, Tesmer L, et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus[J]. J Immunol, 2007,179(9):6352⁃6358. doi: 10.4049/jimmunol.179.9.6352. |
[12] | Oghumu S, Varikuti S, Stock JC, et al. Cutting edge: CXCR3 escapes X chromosome inactivation in T cells during infection: potential implications for sex differences in immune responses[J]. J Immunol, 2019,203(4):789⁃794. doi: 10.4049/jimmunol. 1800931. |
[13] | David A, Trigunaite A, Macleod MK, et al. Intrinsic autoimmune capacities of hematopoietic cells from female New Zealand hybrid mice[J]. Genes Immun, 2014,15(3):153⁃161. doi: 10. 1038/gene.2014.2. |
[14] | Zhou HY, Luo Q, Sui H, et al. Recent advances in the involvement of epigenetics in the pathogenesis of systemic lupus erythematosus[J]. Clin Immunol, 2024,258:109857. doi: 10.1016/ j.clim.2023.109857. |
[15] | Dou DR, Zhao Y, Belk JA, et al. Xist ribonucleoproteins promote female sex⁃biased autoimmunity[J]. Cell, 2024,187(3):733⁃749.e16. doi: 10.1016/j.cell.2023.12.037. |
[16] | Zhao H, Wang L, Luo H, et al. TNFAIP3 downregulation mediated by histone modification contributes to T⁃cell dysfunction in systemic lupus erythematosus[J]. Rheumatology (Oxford), 2017,56(5):835⁃843. doi: 10.1093/rheumatology/kew508. |
[17] | Tang Y, Luo X, Cui H, et al. MicroRNA⁃146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins[J]. Arthritis Rheum, 2009,60(4):1065⁃1075. doi: 10.1002/art.24436. |
[18] | Navarro Quiroz E, Navarro Quiroz R, Pacheco Lugo L, et al. Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus[J]. PLoS One, 2019,14(6):e0218116. doi: 10.1371/journal.pone.0218116. |
[19] | Yu C, Chang C, Zhang J. Immunologic and genetic considerations of cutaneous lupus erythematosus: a comprehensive review[J]. J Autoimmun, 2013,41:34⁃45. doi: 10.1016/j.jaut.2013.01.007. |
[20] | Tang Z, Tong X, Huang J, et al. Research progress of keratinocyte⁃programmed cell death in UV⁃induced Skin photodamage[J]. Photodermatol Photoimmunol Photomed, 2021,37(5):442⁃448. doi: 10.1111/phpp.12679. |
[21] | Miyagawa F. Current knowledge of the molecular pathogenesis of cutaneous lupus erythematosus[J]. J Clin Med, 2023,12(3):987. doi: 10.3390/jcm12030987. |
[22] | Liu Y, Xu M, Min X, et al. TWEAK/Fn14 activation participates in Ro52⁃mediated photosensitization in cutaneous lupus erythematosus[J]. Front Immunol, 2017,8:651. doi: 10.3389/fimmu.2017.00651. |
[23] | Wenzel J. Cutaneous lupus erythematosus: new insights into pathogenesis and therapeutic strategies[J]. Nat Rev Rheumatol, 2019,15(9):519⁃532. doi: 10.1038/s41584⁃019⁃0272⁃0. |
[24] | Sabbatini A, Bombardieri S, Migliorini P. Autoantibodies from patients with systemic lupus erythematosus bind a shared sequence of SmD and Epstein⁃Barr virus⁃encoded nuclear antigen EBNA I[J]. Eur J Immunol, 1993,23(5):1146⁃1152. doi: 10.1002/eji.1830230525. |
[25] | Colmegna I, Garry RF. Role of endogenous retroviruses in autoimmune diseases[J]. Infect Dis Clin North Am, 2006,20(4):913⁃929. doi: 10.1016/j.idc.2006.09.008. |
[26] | Hemauer A, Beckenlehner K, Wolf H, et al. Acute parvovirus B19 infection in connection with a flare of systemic lupus erythematodes in a female patient[J]. J Clin Virol, 1999,14(1):73⁃77. doi: 10.1016/s1386⁃6532(99)00038⁃4. |
[27] | Gergely P Jr, Pullmann R, Stancato C, et al. Increased prevalence of transfusion⁃transmitted virus and cross⁃reactivity with immunodominant epitopes of the HRES⁃1/p28 endogenous retroviral autoantigen in patients with systemic lupus erythematosus[J]. Clin Immunol, 2005,116(2):124⁃134. doi: 10.1016/j.clim.2005.04.002. |
[28] | Chang C, Gershwin ME. Drug⁃induced lupus erythematosus: incidence, management and prevention[J]. Drug Saf, 2011,34(5):357⁃374. doi: 10.2165/11588500⁃000000000⁃00000. |
[29] | He Y, Sawalha AH. Drug⁃induced lupus erythematosus: an update on drugs and mechanisms[J]. Curr Opin Rheumatol, 2018,30(5):490⁃497. doi: 10.1097/BOR.0000000000000522. |
[30] | Rubin RL. Drug⁃induced lupus[J]. Toxicology, 2005,209(2):135⁃147. doi: 10.1016/j.tox.2004.12.025. |
[31] | Yokogawa N, Vivino FB. Hydralazine⁃induced autoimmune disease: comparison to idiopathic lupus and ANCA⁃positive vasculitis[J]. Mod Rheumatol, 2009,19(3):338⁃347. doi: 10. 1007/s10165⁃009⁃0168⁃y. |
[32] | Law C, Wacleche VS, Cao Y, et al. Interferon subverts an AHR⁃JUN axis to promote CXCL13(+) T cells in lupus[J]. Nature, 2024,631(8022):857⁃866. doi: 10.1038/s41586⁃024⁃07627⁃2. |
[33] | Guo C, Liu Q, Zong D, et al. Single⁃cell transcriptome profiling and chromatin accessibility reveal an exhausted regulatory CD4+ T cell subset in systemic lupus erythematosus[J]. Cell Rep, 2022,41(6):111606. doi: 10.1016/j.celrep.2022.111606. |
[34] | Scherlinger M, Guillotin V, Douchet I, et al. Selectins impair regulatory T cell function and contribute to systemic lupus erythematosus pathogenesis[J]. Sci Transl Med, 2021,13(600):eabi4994 [pii]. doi: 10.1126/scitranslmed.abi4994. |
[35] | Mori S, Kohyama M, Yasumizu Y, et al. Neoself⁃antigens are the primary target for autoreactive T cells in human lupus[J]. Cell, 2024,187(21):6071⁃6087. doi: 10.1016/j.cell.2024.08.025. |
[36] | Katsuyama E, Suarez⁃Fueyo A, Bradley SJ, et al. The CD38/NAD/SIRTUIN1/EZH2 axis mitigates cytotoxic CD8 T Cell function and identifies patients with SLE prone to infections[J]. Cell Rep, 2020,30(1):112⁃123.e4. doi: 10.1016/j.celrep.2019. 12.014. |
[37] | Xiong H, Cui M, Kong N, et al. Cytotoxic CD161(-)CD8(+) T(EMRA) cells contribute to the pathogenesis of systemic lupus erythematosus[J]. EBioMedicine, 2023,90:104507. doi: 10.1016/ j.ebiom.2023.104507. |
[38] | Phalke S, Rivera⁃Correa J, Jenkins D, et al. Molecular mechanisms controlling age⁃associated B cells in autoimmunity[J]. Immunol Rev, 2022,307(1):79⁃100. doi: 10.1111/imr.13068. |
[39] | Sachinidis A, Xanthopoulos K, Garyfallos A. Age⁃associated B cells (ABCs) in the prognosis, diagnosis and therapy of systemic lupus erythematosus (SLE)[J]. Mediterr J Rheumatol, 2020,31(3):311⁃318. doi: 10.31138/mjr.31.3.311. |
[40] | Matsushita T. Regulatory and effector B cells: friends or foes?[J]. J Dermatol Sci, 2019,93(1):2⁃7. doi: 10.1016/j.jdermsci. 2018.11.008. |
[41] | Gu S, Zhang J, Han X, et al. Involvement of transcriptional factor Pbx1 in peripheral B cell homeostasis to constrain lupus autoimmunity[J]. Arthritis Rheumatol, 2023,75(8):1381⁃1394. doi: 10.1002/art.42487. |
[42] | Wang XY, Wei Y, Hu B, et al. c⁃Myc⁃driven glycolysis polarizes functional regulatory B cells that trigger pathogenic inflammatory responses[J]. Signal Transduct Target Ther, 2022,7(1):105. doi: 10.1038/s41392⁃022⁃00948⁃6. |
[43] | Goto M, Takahashi H, Yoshida R, et al. Age⁃associated CD4(+) T cells with B cell⁃promoting functions are regulated by ZEB2 in autoimmunity[J]. Sci Immunol, 2024,9(93):eadk1643. doi: 10. 1126/sciimmunol.adk1643. |
[44] | Dai D, Gu S, Han X, et al. The transcription factor ZEB2 drives the formation of age⁃associated B cells[J]. Science, 2024,383(6681):413⁃421. doi: 10.1126/science.adf8531. |
[45] | Gao X, Shen Q, Roco JA, et al. Zeb2 drives the formation of CD11c(+) atypical B cells to sustain germinal centers that control persistent infection[J]. Sci Immunol, 2024,9(93):eadj4748. doi: 10.1126/sciimmunol.adj4748. |
[46] | Jiang J, Zhao M, Chang C, et al. Type I interferons in the pathogenesis and treatment of autoimmune diseases[J]. Clin Rev Allergy Immunol, 2020,59(2):248⁃272. doi: 10.1007/s12016⁃020⁃08798⁃2. |
[47] | Klein B, Nguyen N, Moallemian R, et al. Keratinocytes ⁃ amplifiers of immune responses in systemic lupus erythematosus[J]. Curr Rheumatol Rep, 2024,27(1):1. doi: 10.1007/s11926⁃024⁃01168⁃3. |
[48] | Zheng M, Hu Z, Mei X, et al. Single⁃cell sequencing shows cellular heterogeneity of cutaneous lesions in lupus erythematosus[J]. Nat Commun, 2022,13(1):7489. doi: 10. 1038/s41467⁃022⁃35209⁃1. |
[49] | Tian J, Shi L, Zhang D, et al. Dysregulation in keratinocytes drives systemic lupus erythematosus onset[J]. Cell Mol Immunol, 2025,22(1):83⁃96. doi: 10.1038/s41423⁃024⁃01240⁃z. |
[50] | Terui H, Yamasaki K, Wada⁃Irimada M, et al. Staphylococcus aureus skin colonization promotes SLE⁃like autoimmune inflammation via neutrophil activation and the IL⁃23/IL⁃17 axis[J]. Sci Immunol, 2022,7(76):eabm9811. doi: 10.1126/sciimmunol.abm9811. |
[51] | Clottu AS, Humbel M, Fluder N, et al. Innate lymphoid cells in autoimmune diseases[J]. Front Immunol, 2021,12:789788. doi: 10.3389/fimmu.2021.789788. |
[52] | Guo C, Zhou M, Zhao S, et al. Innate lymphoid cell disturbance with increase in ILC1 in systemic lupus erythematosus[J]. Clin Immunol, 2019,202:49⁃58. doi: 10.1016/j.clim.2019.03.008. |
[53] | Montano EN, Bose M, Huo L, et al. α⁃Ketoglutarate⁃dependent KDM6 histone demethylases and interferon⁃stimulated gene expression in lupus[J]. Arthritis Rheumatol, 2024,76(3):396⁃410. doi: 10.1002/art.42724. |
[54] | Barnhart S, Shimizu⁃Albergine M, Kedar E, et al. Type I IFN induces long⁃chain acyl⁃CoA synthetase 1 to generate a phosphatidic acid reservoir for lipotoxic saturated fatty acids[J]. J Lipid Res, 2025,66(1):100730. doi: 10.1016/j.jlr.2024.100730. |
[55] | Chen B, Cao J, Liu W, et al. Disturbed gut virome with potent interferonogenic property in systemic lupus erythematosus[J]. Sci Bull (Beijing), 2023,68(3):295⁃304. doi: 10.1016/j.scib. 2023.01.021. |
[56] | Zhang B, Zhou W, Liu Q, et al. Effects of fecal microbiota transplant on DNA methylation in patients with systemic lupus erythematosus[J]. J Autoimmun, 2023,141:103047. doi: 10. 1016/j.jaut.2023.103047. |
[57] | Sabrautzki S, Janas E, Lorenz⁃Depiereux B, et al. An ENU mutagenesis⁃derived mouse model with a dominant Jak1 mutation resembling phenotypes of systemic autoimmune disease[J]. Am J Pathol, 2013,183(2):352⁃368. doi: 10.1016/j.ajpath. 2013.04.027. |
[58] | Mähönen K, Hau A, Bondet V, et al. Activation of NLRP3 inflammasome in the skin of patients with systemic and cutaneous lupus erythematosus[J]. Acta Derm Venereol, 2022,102:adv00708. doi: 10.2340/actadv.v102.2293. |
[59] | Erazo⁃Martínez V, Tobón GJ, Cañas CA. Circulating and skin biopsy⁃present cytokines related to the pathogenesis of cutaneous lupus erythematosus[J]. Autoimmun Rev, 2023,22(2):103262. doi: 10.1016/j.autrev.2022.103262. |
[60] | Tzeng HT, Chyuan IT. Immunometabolism in systemic lupus erythematosus: relevant pathogenetic mechanisms and potential clinical applications[J]. J Formos Med Assoc, 2021,120(9):1667⁃1675. doi: 10.1016/j.jfma.2021.03.019. |
[61] | Kim J, Gupta R, Blanco LP, et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus⁃like disease[J]. Science, 2019,366(6472):1531⁃1536. doi: 10.1126/science.aav4011. |
[62] | Riley JS, Quarato G, Cloix C, et al. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis[J]. EMBO J, 2018,37(17):e99238. doi: 10.15252/embj.201899238. |
[63] | Pisetsky DS, Spencer DM, Mobarrez F, et al. The binding of SLE autoantibodies to mitochondria[J]. Clin Immunol, 2020,212:108349. doi: 10.1016/j.clim.2020.108349. |
[64] | Koga T, Sato T, Furukawa K, et al. Promotion of calcium/calmodulin⁃dependent protein kinase 4 by GLUT1⁃dependent glycolysis in systemic lupus erythematosus[J]. Arthritis Rheumatol, 2019,71(5):766⁃772. doi: 10.1002/art.40785. |
[65] | Koga T, Hedrich CM, Mizui M, et al. CaMK4⁃dependent activation of AKT/mTOR and CREM⁃α underlies autoimmunity⁃associated Th17 imbalance[J]. J Clin Invest, 2014,124(5):2234⁃2245. doi: 10.1172/JCI73411. |
[66] | Chen D, Wang Y, Manakkat Vijay GK, et al. Coupled analysis of transcriptome and BCR mutations reveals role of OXPHOS in affinity maturation[J]. Nat Immunol, 2021,22(7):904⁃913. doi: 10.1038/s41590⁃021⁃00936⁃y. |
[67] | Fu Y, Wang L, Yu B, et al. Immunometabolism shapes B cell fate and functions[J]. Immunology, 2022,166(4):444⁃457. doi: 10.1111/imm.13499. |
[68] | Zeng Q, Wang S, Li M, et al. Spleen fibroblastic reticular cell⁃derived acetylcholine promotes lipid metabolism to drive autoreactive B cell responses[J]. Cell Metab, 2023,35(5):837⁃854.e8. doi: 10.1016/j.cmet.2023.03.010. |
[69] | Ji X, Wu L, Marion T, et al. Lipid metabolism in regulation of B cell development and autoimmunity[J]. Cytokine Growth Factor Rev, 2023,73:40⁃51. doi: 10.1016/j.cytogfr.2023.06.008. |
[70] | Wu D, Sanin DE, Everts B, et al. Type 1 interferons induce changes in core metabolism that are critical for immune function[J]. Immunity, 2016,44(6):1325⁃1336. doi: 10.1016/j.immuni. 2016.06.006. |
[71] | Zhang X, Chen Y, Sun G, et al. Farnesyl pyrophosphate potentiates dendritic cell migration in autoimmunity through mitochondrial remodelling[J]. Nat Metab, 2024,6(11):2118⁃2137. doi: 10.1038/s42255⁃024⁃01149⁃x. |
[72] | Xu Y, Li P, Li K, et al. Pathological mechanisms and crosstalk among different forms of cell death in systemic lupus erythematosus[J]. J Autoimmun, 2022,132:102890. doi: 10.1016/ j.jaut.2022.102890. |
[73] | Tan Q, Huang WH, Zheng Y, et al. Unveiling the nexus: decoding interactions between regulated cell death and systemic lupus erythematosus pathogenesis for innovative therapeutic avenues[J]. Rheumatol & Autoimmun, 2024,4:1⁃10. doi:10. 1002/rai2.12104. |
[74] | Katsuyama T, Martin⁃Delgado IJ, Krishfield SM, et al. Splicing factor SRSF1 controls T cell homeostasis and its decreased levels are linked to lymphopenia in systemic lupus erythematosus[J]. Rheumatology (Oxford), 2020,59(8):2146⁃2155. doi: 10. 1093/rheumatology/keaa094. |
[75] | Cui JH, Qiao Q, Guo Y, et al. Increased apoptosis and expression of FasL, Bax and caspase⁃3 in human lupus nephritis classⅡ and Ⅳ[J]. J Nephrol, 2012,25(2):255⁃261. doi: 10. 5301/JN.2011.8451. |
[76] | Li B, Yue Y, Dong C, et al. Blockade of macrophage autophagy ameliorates activated lymphocytes⁃derived DNA induced murine lupus possibly via inhibition of proinflammatory cytokine production[J]. Clin Exp Rheumatol, 2014,32(5):705⁃714. |
[77] | Martinez J, Cunha LD, Park S, et al. Corrigendum: noncanonical autophagy inhibits the autoinflammatory, lupus⁃like response to dying cells[J]. Nature, 2016,539(7627):124. doi: 10.1038/nature19837. |
[78] | Yuan Q, Li Y, Li J, et al. WDFY4 is involved in symptoms of systemic lupus erythematosus by modulating B cell fate via noncanonical autophagy[J]. J Immunol, 2018,201(9):2570⁃2578. doi: 10.4049/jimmunol.1800399. |
[79] | Xing Y, Zhao J, Zhou M, et al. The LPS induced pyroptosis exacerbates BMPR2 signaling deficiency to potentiate SLE⁃PAH[J]. FASEB J, 2021,35(12):e22044. doi: 10.1096/fj.202100851RR. |
[80] | Choi ME, Price DR, Ryter SW, et al. Necroptosis: a crucial pathogenic mediator of human disease[J]. JCI Insight, 2019,4(15):e128834. doi: 10.1172/jci.insight.128834. |
[81] | Lauffer F, Jargosch M, Krause L, et al. Type I immune response induces keratinocyte necroptosis and is associated with interface dermatitis[J]. J Invest Dermatol, 2018,138(8):1785⁃1794. doi: 10.1016/j.jid.2018.02.034. |
[82] | Chen Y, Lin J, Xiao L, et al. Gut microbiota in systemic lupus erythematosus: a fuse and a solution[J]. J Autoimmun, 2022,132:102867. doi: 10.1016/j.jaut.2022.102867. |
[83] | Chen BD, Jia XM, Xu JY, et al. An autoimmunogenic and proinflammatory profile defined by the gut microbiota of patients with untreated systemic lupus erythematosus[J]. Arthritis Rheumatol, 2021,73(2):232⁃243. doi: 10.1002/art.41511. |
[84] | Wang Q, Wu Y, Lu Q, et al. Contribution of gut⁃derived T cells to extraintestinal autoimmune diseases[J]. Trends Immunol, 2024,45(9):639⁃648. doi: 10.1016/j.it.2024.07.006. |
[85] | Zouali M. B lymphocytes, the gastrointestinal tract and autoimmunity[J]. Autoimmun Rev, 2021,20(4):102777. doi: 10.1016/j.autrev.2021.102777. |
[86] | Sanchez HN, Moroney JB, Gan H, et al. B cell⁃intrinsic epigenetic modulation of antibody responses by dietary fiber⁃ |
derived short⁃chain fatty acids[J]. Nat Commun, 2020,11(1):60. doi: 10.1038/s41467⁃019⁃13603⁃6. | |
[87] | Calixto OJ, Franco JS, Anaya JM. Lupus mimickers[J]. Autoimmun Rev, 2014,13(8):865⁃872. doi: 10.1016/j.autrev. 2014.05.002. |
[88] | Doria A, Zen M, Canova M, et al. SLE diagnosis and treatment: when early is early[J]. Autoimmun Rev, 2010,10(1):55⁃60. doi: 10.1016/j.autrev.2010.08.014. |
[89] | Oglesby A, Korves C, Laliberté F, et al. Impact of early versus late systemic lupus erythematosus diagnosis on clinical and economic outcomes[J]. Appl Health Econ Health Policy, 2014,12(2):179⁃190. doi: 10.1007/s40258⁃014⁃0085⁃x. |
[90] | Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus[J]. Arthritis Rheum, 1997,40(9):1725. doi: 10. 1002/art.1780400928. |
[91] | Petri M, Orbai AM, Alarcón GS, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus[J]. Arthritis Rheum, 2012,64(8):2677⁃2686. doi: 10.1002/art. 34473. |
[92] | Aringer M, Costenbader K, Daikh D, et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for systemic lupus erythematosus[J]. Arthritis Rheumatol, 2019,71(9):1400⁃1412. doi: 10.1002/art. 40930. |
[93] | Yu H, Nagafuchi Y, Fujio K. Clinical and immunological biomarkers for systemic lupus erythematosus[J]. Biomolecules, 2021,11(7):928. doi: 10.3390/biom11070928. |
[94] | Zhang X, Qian H, Chen Y, et al. Autoantibodies targeting to GPER1 promote monocyte cytokines production and inflammation in systemic lupus erythematosus[J]. Signal Transduct Target Ther, 2023,8(1):93. doi: 10.1038/s41392⁃022⁃01294⁃3. |
[95] | Zhao M, Zhou Y, Zhu B, et al. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus[J]. Ann Rheum Dis, 2016,75(11):1998⁃2006. doi: 10.1136/annrheumdis⁃2015⁃208410. |
[96] | Zhang B, Zhou T, Wu H, et al. Difference of IFI44L methylation and serum IFN⁃a1 level among patients with discoid and systemic lupus erythematosus and healthy individuals[J]. J Transl Autoimmun, 2021,4:100092. doi: 10.1016/j.jtauto.2021. 100092. |
[97] | Stanley S, Vanarsa K, Soliman S, et al. Comprehensive aptamer⁃based screening identifies a spectrum of urinary biomarkers of lupus nephritis across ethnicities[J]. Nat Commun, 2020,11(1):2197. doi: 10.1038/s41467⁃020⁃15986⁃3. |
[98] | Ding H, Lin C, Cai J, et al. Urinary activated leukocyte cell adhesion molecule as a novel biomarker of lupus nephritis histology[J]. Arthritis Res Ther, 2020,22(1):122. doi: 10.1186/s13075⁃020⁃02209⁃9. |
[99] | Mejia⁃Vilet JM, Zhang XL, Cruz C, et al. Urinary soluble CD163: a novel noninvasive biomarker of activity for lupus nephritis[J]. J Am Soc Nephrol, 2020,31(6):1335⁃1347. doi: 10.1681/ASN.2019121285. |
[100] | Nielsen AJ, Nielsen MC, Birn H, et al. Urine soluble CD163 (sCD163) as biomarker in glomerulonephritis: stability, reference interval and diagnostic performance[J]. Clin Chem Lab Med, 2021,59(4):701⁃709. doi: 10.1515/cclm⁃2020⁃0466. |
[101] | Lindblom J, Mohan C, Parodis I. Diagnostic, predictive and prognostic biomarkers in systemic lupus erythematosus: current insights[J]. Curr Opin Rheumatol, 2022,34(2):139⁃149. doi: 10.1097/BOR.0000000000000862. |
[102] | He J, Tang D, Liu D, et al. Serum proteome and metabolome uncover novel biomarkers for the assessment of disease activity and diagnosing of systemic lupus erythematosus[J]. Clin Immunol, 2023,251:109330. doi: 10.1016/j.clim.2023.109330. |
[103] | Li Q, Jia C, Pan W, et al. Multi⁃omics study reveals different pathogenesis of the generation of skin lesions in SLE and IDLE patients[J]. J Autoimmun, 2024,146:103203. doi: 10.1016/j.jaut.2024.103203. |
[104] | Zhao M, Feng D, Hu L, et al. 3D genome alterations in T cells associated with disease activity of systemic lupus erythematosus[J]. Ann Rheum Dis, 2023,82(2):226⁃234. doi: 10.1136/ard⁃2022⁃222653. |
[105] | Worm M, Zidane M, Eisert L, et al. S2k guideline: diagnosis and management of cutaneous lupus erythematosus ⁃ Part 1: Classification, diagnosis, prevention, activity scores[J]. J Dtsch Dermatol Ges, 2021,19(8):1236⁃1247. doi: 10.1111/ddg.14492. |
[106] | Li Q, Yang Z, Chen K, et al. Human⁃multimodal deep learning collaboration in 'precise' diagnosis of lupus erythematosus subtypes and similar skin diseases[J]. J Eur Acad Dermatol Venereol, 2024,38(12):2268⁃2279. doi: 10.1111/jdv.20031. |
[107] | Wu H, Yin H, Chen H, et al. A deep learning⁃based smartphone platform for cutaneous lupus erythematosus classification assistance: Simplifying the diagnosis of complicated diseases[J]. J Am Acad Dermatol, 2021,85(3):792⁃793. doi: 10.1016/j.jaad.2021.02.043. |
[108] | Möckel T, Basta F, Weinmann⁃Menke J, et al. B cell activating factor (BAFF): structure, functions, autoimmunity and clinical implications in Systemic Lupus Erythematosus (SLE)[J]. Autoimmun Rev, 2021,20(2):102736. doi: 10.1016/j.autrev. 2020.102736. |
[109] | Furie R, Rovin BH, Houssiau F, et al. OP0164 BLISS⁃LN: a randomised, double⁃blind, placebo⁃controlled phase 3 trial of intravenous belimumab in patients with active lupus nephritis[J]. Ann Rheum Dis, 2020,79(supl1):103. doi: 10.1136/annrheumdis⁃2020⁃eular.3881. |
[110] | Navarra SV, Guzmán RM, Gallacher AE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo⁃controlled, phase 3 trial[J]. Lancet, 2011,377(9767):721⁃731. doi: 10.1016/S0140⁃6736(10)61354⁃2. |
[111] | Furie R, Petri M, Zamani O, et al. A phaseⅢ, randomized, placebo⁃controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus[J]. Arthritis Rheum, 2011,63(12):3918⁃3930. doi: 10.1002/art.30613. |
[112] | Wu D, Li J, Wang W, et al. A human recombinant fusion protein targeting B lymphocyte stimulator (BlyS) and a proliferation⁃inducing ligand (APRIL), telitacicept (RC18), in systemic lupus erythematosus (SLE): results of a phase 2b study[J]. Arthritis Rheumatol, 2019, 71(suppl 10):L18. |
[113] | Wu D, Li J, Wang L, et al. Telitacicept, a human recombinant fusion protein targeting B lymphocyte stimulator (BlyS) and a proliferation⁃inducing ligand (APRIL), in systemic lupus erythematosus (SLE): results of a phase 3 study[J]. Arthritis Rheumatol, 2022, 74(suppl 9):L07. |
[114] | Furie RA, Morand EF, Bruce IN, et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP⁃1): a randomised, controlled, phase 3 trial[J]. Lancet Rheumatol, 2019,1(4):e208⁃e219. doi: 10.1016/S2665⁃9913(19)30076⁃1. |
[115] | Morand EF, Furie R, Tanaka Y, et al. Trial of anifrolumab in active systemic lupus erythematosus[J]. N Engl J Med, 2020,382(3):211⁃221. doi: 10.1056/NEJMoa1912196. |
[116] | Teng Y, Bruce IN, Diamond B, et al. PhaseⅢ, multicentre, randomised, double⁃blind, placebo⁃controlled, 104⁃week study of subcutaneous belimumab administered in combination with rituximab in adults with systemic lupus erythematosus (SLE): BLISS⁃BELIEVE study protocol[J]. BMJ Open, 2019,9(3):e025687. doi: 10.1136/bmjopen⁃2018⁃025687. |
[117] | Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders[J]. Signal Transduct Target Ther, 2024,9(1):263. doi: 10.1038/s41392⁃024⁃01952⁃8. |
[118] | Lai ZW, Kelly R, Winans T, et al. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single⁃arm, open⁃label, phase 1/2 trial[J]. Lancet, 2018,391(10126):1186⁃1196. doi: 10.1016/S0140⁃6736(18)30485⁃9. |
[119] | Yap D, Tang C, Chan G, et al. Longterm data on sirolimus treatment in patients with lupus nephritis[J]. J Rheumatol, 2018,45(12):1663⁃1670. doi: 10.3899/jrheum.180507. |
[120] | Titov AA, Baker HV, Brusko TM, et al. Metformin inhibits the type 1 ifn response in human CD4(+) T cells[J]. J Immunol, 2019,203(2):338⁃348. doi: 10.4049/jimmunol.1801651. |
[121] | Teng X, Cornaby C, Li W, et al. Metabolic regulation of pathogenic autoimmunity: therapeutic targeting[J]. Curr Opin Immunol, 2019,61:10⁃16. doi: 10.1016/j.coi.2019.07.001. |
[122] | Wang H, Li T, Chen S, et al. Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof⁃of⁃concept trial of metformin[J]. Arthritis Rheumatol, 2015,67(12):3190⁃3200. doi: 10.1002/art.39296. |
[123] | Sun F, Wang HJ, Liu Z, et al. Safety and efficacy of metformin in systemic lupus erythematosus: a multicentre, randomised, double⁃blind, placebo⁃controlled trial[J]. Lancet Rheumatol, 2020,2(4):e210⁃e216. doi: 10.1016/S2665⁃9913(20)30004⁃7. |
[124] | Yin Y, Choi SC, Xu Z, et al. Normalization of CD4+ T cell metabolism reverses lupus[J]. Sci Transl Med, 2015,7(274):274ra18. doi: 10.1126/scitranslmed.aaa0835. |
[125] | Raeber ME, Caspar DP, Zurbuchen Y, et al. Interleukin⁃2 immunotherapy reveals human regulatory T cell subsets with distinct functional and tissue⁃homing characteristics[J]. Immunity, 2024,57(9):2232⁃2250.e10. doi: 10.1016/j.immuni. 2024.07.016. |
[126] | Goropevšek A, Holcar M, Pahor A, et al. STAT signaling as a marker of SLE disease severity and implications for clinical therapy[J]. Autoimmun Rev, 2019,18(2):144⁃154. doi: 10. 1016/j.autrev.2018.08.010. |
[127] | Wallace DJ, Furie RA, Tanaka Y, et al. Baricitinib for systemic lupus erythematosus: a double⁃blind, randomised, placebo⁃controlled, phase 2 trial[J]. Lancet, 2018,392(10143):222⁃231. doi: 10.1016/S0140⁃6736(18)31363⁃1. |
[128] | Lee J, Park Y, Jang SG, et al. Baricitinib attenuates autoimmune phenotype and podocyte injury in a murine model of systemic lupus erythematosus[J]. Front Immunol, 2021,12:704526. doi: 10.3389/fimmu.2021.704526. |
[129] | Morand EF, Vital EM, Petri M, et al. Baricitinib for systemic lupus erythematosus: a double⁃blind, randomised, placebo⁃controlled, phase 3 trial (SLE⁃BRAVE⁃I)[J]. Lancet, 2023,401(10381):1001⁃1010. doi: 10.1016/S0140⁃6736(22)02607⁃1. |
[130] | Petri M, Bruce IN, Dörner T, et al. Baricitinib for systemic lupus erythematosus: a double⁃blind, randomised, placebo⁃controlled, phase 3 trial (SLE⁃BRAVE⁃Ⅱ)[J]. Lancet, 2023,401(10381):1011⁃1019. doi: 10.1016/S0140⁃6736(22)02546⁃6. |
[131] | Merrill JT, Tanaka Y, D'Cruz D, et al. Efficacy and safety of upadacitinib or elsubrutinib alone or in combination for patients with systemic lupus erythematosus: a phase 2 randomized controlled trial[J]. Arthritis Rheumatol, 2024,76(10):1518⁃1529. doi: 10.1002/art.42926. |
[132] | Morand E, Pike M, Merrill JT, et al. Deucravacitinib, a tyrosine kinase 2 inhibitor, in systemic lupus erythematosus: a phase Ⅱ, randomized, double⁃blind, placebo⁃controlled trial[J]. Arthritis Rheumatol, 2023,75(2):242⁃252. doi: 10.1002/art.42391. |
[133] | Raeber ME, Caspar DP, Zurbuchen Y, et al. Interleukin⁃2 immunotherapy reveals human regulatory T cell subsets with distinct functional and tissue⁃homing characteristics[J]. Immunity, 2024,57(9):2232⁃2250.e10. doi: 10.1016/j.immuni. 2024.07.016. |
[134] | Humrich JY, Cacoub P, Rosenzwajg M, et al. Low⁃dose interleukin⁃2 therapy in active systemic lupus erythematosus (LUPIL⁃2): a multicentre, double⁃blind, randomised and placebo⁃controlled phaseⅡtrial[J]. Ann Rheum Dis, 2022,81(12):1685⁃1694. doi: 10.1136/ard⁃2022⁃222501. |
[135] | He J, Zhang X, Wei Y, et al. Low⁃dose interleukin⁃2 treatment selectively modulates CD4(+) T cell subsets in patients with systemic lupus erythematosus[J]. Nat Med, 2016,22(9):991⁃993. doi: 10.1038/nm.4148. |
[136] | Doglio M, Alexander T, Del Papa N, et al. New insights in systemic lupus erythematosus: from regulatory T cells to CAR⁃T⁃cell strategies[J]. J Allergy Clin Immunol, 2022,150(6):1289⁃1301. doi: 10.1016/j.jaci.2022.08.003. |
[137] | Mackensen A, Müller F, Mougiakakos D, et al. Anti⁃CD19 CAR T cell therapy for refractory systemic lupus erythematosus[J]. Nat Med, 2022,28(10):2124⁃2132. doi: 10.1038/s41591⁃022⁃02017⁃5. |
[138] | Zhang W, Feng J, Cinquina A, et al. Treatment of systemic lupus erythematosus using BCMA⁃CD19 compound CAR[J]. Stem Cell Rev Rep, 2021,17(6):2120⁃2123. doi: 10.1007/s12015⁃021⁃10251⁃6. |
[139] | Gust J, Taraseviciute A, Turtle CJ. Neurotoxicity associated with CD19⁃targeted CAR⁃T cell therapies[J]. CNS Drugs, 2018,32(12):1091⁃1101. doi: 10.1007/s40263⁃018⁃0582⁃9. |
[140] | Neelapu SS. Managing the toxicities of CAR T⁃cell therapy[J]. Hematol Oncol, 2019,37 Suppl 1:48⁃52. doi: 10.1002/hon.2595. |
[141] | Reighard SD, Cranert SA, Rangel KM, et al. Therapeutic targeting of follicular T cells with chimeric antigen receptor⁃expressing natural killer cells[J]. Cell Rep Med, 2020,1(1). doi: 10.1016/j.xcrm.2020.100003. |
[142] | 中华医学会风湿病学分会, 中国医院协会临床新技术应用专业委员会. 异体间充质干细胞治疗系统性红斑狼疮专家共识[J]. 中华风湿病学杂志, 2022,(1):1⁃8. doi: 10.3760/cma.j.cn141217⁃20210923⁃00381. |
[143] | Huang C, Yi P, Zhu M, et al. Safety and efficacy of fecal microbiota transplantation for treatment of systemic lupus erythematosus: an EXPLORER trial[J]. J Autoimmun, 2022,130:102844. doi: 10.1016/j.jaut.2022.102844. |
[144] | Li W, Titov AA, Morel L. An update on lupus animal models[J]. Curr Opin Rheumatol, 2017,29(5):434⁃441. doi: 10.1097/BOR.0000000000000412. |
[145] | Zhou S, Li Q, Zhou S, et al. A novel humanized cutaneous lupus erythematosus mouse model mediated by IL⁃21⁃induced age⁃associated B cells[J]. J Autoimmun, 2021,123:102686. doi: 10.1016/j.jaut.2021.102686. |
[146] | Touma Z, Gladman DD. Current and future therapies for SLE: obstacles and recommendations for the development of novel treatments[J]. Lupus Sci Med, 2017,4(1):e000239. doi: 10.1136/lupus⁃2017⁃000239. |
[147] | Yang B, Chen Y, Jiang J, et al. The importance of developing reproducible primary endpoints for clinical trials in systemic lupus erythematosus[J]. Clin Rheumatol, 2025,44(1):183⁃192. doi: 10.1007/s10067⁃024⁃07236⁃4. |
[148] | Rodríguez⁃Pintó I, Espinosa G, Cervera R. The problems and pitfalls in systemic lupus erythematosus drug discovery[J]. Expert Opin Drug Discov, 2016,11(6):525⁃527. doi: 10.1080/17460441.2016.1181056. |
[149] | Lorenzo⁃Vizcaya A, Isenberg DA. Clinical trials in systemic lupus erythematosus: the dilemma⁃Why have phaseⅢ trials failed to confirm the promising results of phaseⅡtrials?[J]. Ann Rheum Dis, 2023,82(2):169⁃174. doi: 10.1136/ard⁃2022⁃222839. |
[150] | Khalili L, Tang W, Askanase AD. Lupus clinical trials and the promise of future therapies[J]. Rheumatol Immunol Res, 2023,4(3):109⁃114. doi: 10.2478/rir⁃2023⁃0018. |
[151] | Dai Z, Huang X, Yuan F, et al. Health care⁃seeking behaviors, disease progression, medications, knowledge of, and attitudes toward systemic lupus erythematosus in China: cross⁃sectional survey study[J]. JMIR Public Health Surveill, 2023,9:e44541. doi: 10.2196/44541. |
[152] | Ding Q, Zhou Y, Feng Y, et al. Bruton's tyrosine kinase: a promising target for treating systemic lupus erythematosus[J]. Int Immunopharmacol, 2024,142(Pt A):113040. doi: 10.1016/j.intimp.2024.113040. |
[1] | Ma Tongchuan, Cai Xinying, Wang Rui, Dong Liping, Chen Lele, Xiao Fengli, . Serum lipidomic profiling in patients with dermatomyositis based on ultra-performance liquid chromatography-mass spectrometry [J]. Chinese Journal of Dermatology, 2025, 58(8): 736-743. |
[2] | Song Zhiqiang, Yang Xianjie, Chen Qiquan. Disease management and modification in chronic spontaneous urticaria: needs and prospects in the new era [J]. Chinese Journal of Dermatology, 2025, 58(6): 503-507. |
[3] | Ye Mingyu, Shi Yanting, Li Hao, Xiang Jie, Wang Song, Cao Hua. Clinical significance of serum galectin-9 levels in the evaluation of combined tumors in dermatomyositis patients [J]. Chinese Journal of Dermatology, 2025, 58(4): 328-333. |
[4] | Zhou Tiantian, Wu Xuege, Yang Huan, Fang Xiao, Jiang Jinqiu, Chen Jingsi, Luo Xiaoyan, Wang Hua. Analysis of the etiology and factors associated with the severity of chronic spontaneous urticaria in children [J]. Chinese Journal of Dermatology, 2024, 57(4): 324-330. |
[5] | Chen Zhu, Dong Liping, Xiao Fengli, . Research progress in atopic diseases from the perspective of metabolomics [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220366-e20220366. |
[6] | Zhang Yude, Wang Hongjuan, Kang Xiaojing. Stem cell therapy for vitiligo: advances in basic and clinical research [J]. Chinese Journal of Dermatology, 2024, 0(3): 20240127-e20240127. |
[7] | Gao Jinping, Zhang Xuejun, . Clinical application of baricitinib in dermatology [J]. Chinese Journal of Dermatology, 2024, 0(3): 20230528-e20230528. |
[8] | Xu Zhuohong, Zhou Xuyue, Hu Yu, Gu Heng. Role of mast cells in the pathogenesis of chronic spontaneous urticaria and advances in mast cell-targeted therapies [J]. Chinese Journal of Dermatology, 2024, 0(3): 20240291-e20240291. |
[9] | Yao Manxue, Zhou Naihui. Stevens-Johnson syndrome/toxic epidermal necrolysis associated with programmed death-1/programmed death-ligand 1 inhibitors [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220644-e20220644. |
[10] | Pan Ruoxin, Gu Duoduo, Zhang Yue, Li Min, Tao Meng, Xu Yang. Metabolomics in rosacea [J]. Chinese Journal of Dermatology, 2024, 57(2): 178-181. |
[11] | Wang Haoyang, Wang Yidan, Lu Yan . Role of neurogenic inflammatory factors in the pathogenesis of vitiligo [J]. Chinese Journal of Dermatology, 2024, 57(1): 78-81. |
[12] | Yang Yongting, Li Tingting, Kang Xiaojing. Biomarkers related to the treatment of melanoma with immune checkpoint inhibitors [J]. Chinese Journal of Dermatology, 2023, 56(3): 278-283. |
[13] | He Qing, Zhang Tao, Wang Xiuli, Gao Xinghua, Chen Hongduo, Liu Min, Qi Ruiqun. Biomarkers associated with malignant progression of actinic keratosis [J]. Chinese Journal of Dermatology, 2023, 0(2): 20220284-e20220284. |
[14] | Sha Shanshan, Li Jun, Tao Juan. Melanoma immunotherapy: difficulties and strategies [J]. Chinese Journal of Dermatology, 2021, 54(4): 313-317. |
[15] | Chen Yihe, Luo Dan. Immune checkpoint inhibitor therapy for malignant melanoma [J]. Chinese Journal of Dermatology, 2020, 53(10): 841-845. |
|