Chinese Journal of Dermatology ›› 2024, Vol. 57 ›› Issue (11): 1037-1044.doi: 10.35541/cjd.20240206
• Original Articles • Previous Articles Next Articles
Yang Lu1,2, Wang Zhenzhen3, Shi Ying3, Zhong Huiting1, Yu Yuanyuan4, Ma Han1, Chen Yanqing1,2
Received:
2024-04-18
Revised:
2024-09-19
Online:
2024-11-15
Published:
2024-10-31
Contact:
Ma Han; Chen Yanqing
E-mail:mhan@mail.sysu.edu.cn; chenyq339@mail.sysu.edu.cn
Supported by:
Yang Lu, Wang Zhenzhen, Shi Ying, Zhong Huiting, Yu Yuanyuan, Ma Han, Chen Yanqing, . Evaluation of effects of Mycobacterium marinum on macrophages through a metabolomics analysis[J]. Chinese Journal of Dermatology, 2024, 57(11): 1037-1044.doi:10.35541/cjd.20240206
[1] | Park JB, Seong SH, Kwon DI, et al. Mycobacterium marinum infection spreading in a "birds in flocks" pattern: all caseating granuloma is not tuberculosis[J]. Acta Derm Venereol, 2020,100(14):adv00200. doi: 10.2340/00015555⁃3538. |
[2] | Gonzalez⁃Santiago TM, Drage LA. Nontuberculous mycobacteria: skin and soft tissue infections[J]. Dermatol Clin, 2015,33(3):563⁃577. doi: 10.1016/j.det.2015.03.017. |
[3] | Rapovy SM, Zhao J, Bricker RL, et al. Differential requirements for L⁃citrulline and L⁃arginine during antimycobacterial macrophage activity[J]. J Immunol, 2015,195(7):3293⁃3300. doi: 10.4049/jimmunol.1500800. |
[4] | Langston PK, Shibata M, Horng T. Metabolism supports macrophage activation[J]. Front Immunol, 2017,8:61. doi: 10. 3389/fimmu.2017.00061. |
[5] | Van den Bossche J, O'Neill LA, Menon D. Macrophage immunometabolism: where are we (going)?[J]. Trends Immunol, 2017,38(6):395⁃406. doi: 10.1016/j.it.2017.03.001. |
[6] | Stienstra R, Netea⁃Maier RT, Riksen NP, et al. Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses[J]. Cell Metab, 2017,26(1):142⁃156. doi: 10.1016/j.cmet.2017.06.001. |
[7] | Kim JK, Park EJ, Jo EK. Itaconate, arginine, and gamma⁃aminobutyric acid: a host metabolite triad protective against mycobacterial infection[J]. Front Immunol, 2022,13:832015. doi: 10.3389/fimmu.2022.832015. |
[8] | Zuo X, Wang L, Bao Y, et al. The ESX⁃1 virulence factors downregulate miR⁃147⁃3p in Mycobacterium marinum⁃infected macrophages[J]. Infect Immun, 2020,88(6):e00088⁃00020. doi: 10.1128/IAI.00088⁃20. |
[9] | 刘冬梅, 韩晓群, 杨婧, 等. PPARγ/CD36信号通路在结核分枝杆菌感染巨噬细胞脂质代谢中的作用[J]. 中华微生物学和免疫学杂志, 2021,41(10):749⁃756. doi: 10.3760/cma.j.cn112309⁃20201231⁃00578. |
[10] | Zeng T, Fang B, Huang F, et al. Mass spectrometry⁃based metabolomics investigation on two different indica rice grains (Oryza sativa L.) under cadmium stress[J]. Food Chem, 2021,343:128472. doi: 10.1016/j.foodchem.2020.128472. |
[11] | Li M, Haixia Y, Kang M, et al. The arachidonic acid metabolism mechanism based on UPLC⁃MS/MS metabolomics in recurrent spontaneous abortion rats[J]. Front Endocrinol (Lausanne), 2021,12:652807. doi: 10.3389/fendo.2021.652807. |
[12] | Chen JX, Han YS, Zhang SQ, et al. Novel therapeutic evaluation biomarkers of lipid metabolism targets in uncomplicated pulmonary tuberculosis patients[J]. Signal Transduct Target Ther, 2021,6(1):22. doi: 10.1038/s41392⁃020⁃00427⁃w. |
[13] | Castillo NE, Gurram P, Sohail MR, et al. Fishing for a diagnosis, the impact of delayed diagnosis on the course of Mycobacterium marinum infection: 21 years of experience at a tertiary care hospital[J]. Open Forum Infect Dis, 2020,7(1):ofz550. doi: 10. 1093/ofid/ofz550. |
[14] | Hurst LC, Amadio PC, Badalamente MA, et al. Mycobacterium marinum infections of the hand[J]. J Hand Surg Am, 1987,12(3):428⁃435. doi: 10.1016/s0363⁃5023(87)80018⁃7. |
[15] | 顾伟, 杨蓊勃, 杨剑云, 等. 手部深部分枝杆菌感染的诊断与治疗[J]. 复旦学报(医学版), 2010,37(4):472⁃474. doi: 10. 3969/j.issn.1672⁃8467.2010.04.020. |
[16] | 暴芳芳, 刘红, 张福仁. 海分枝杆菌感染的历史与现状[J]. 中国麻风皮肤病杂志, 2020,36(11):690⁃696. doi: 10.12144/zgmfskin202011690. |
[17] | Chen Z, Kong X, Ma Q, et al. The impact of Mycobacterium tuberculosis on the macrophage cholesterol metabolism pathway [J]. Front Immunol, 2024, 15: 1402024.doi: 10.3389/fimmu.2024. 1402024. |
[18] | O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists[J]. Nat Rev Immunol, 2016,16(9):553⁃565. doi: 10.1038/nri.2016.70. |
[19] | Qualls JE, Subramanian C, Rafi W, et al. Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1[J]. Cell Host Microbe, 2012,12(3):313⁃323. doi: 10.1016/j.chom.2012.07.012. |
[20] | Lange SM, McKell MC, Schmidt SM, et al. L⁃citrulline metabolism in mice augments CD4(+) T cell proliferation and cytokine production in vitro, and accumulation in the mycobacteria⁃infected lung[J]. Front Immunol, 2017,8:1561. doi: 10.3389/fimmu.2017.01561. |
[21] | Mao Y, Shi D, Li G, et al. Citrulline depletion by ASS1 is required for proinflammatory macrophage activation and immune responses[J]. Mol Cell, 2022, 82(3): 527⁃541. doi: 10.1016/j.molcel.2021.12.006. |
[22] | Papathanassiu AE, Ko JH, Imprialou M, et al. BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases[J]. Nat Commun, 2017,8:16040. doi: 10.1038/ncomms16040. |
[23] | Awasthy D, Bharath S, Subbulakshmi V, et al. Alanine racemase mutants of Mycobacterium tuberculosis require D⁃alanine for growth and are defective for survival in macrophages and mice[J]. Microbiology (Reading), 2012,158(Pt 2):319⁃327. doi: 10. 1099/mic.0.054064⁃0. |
[24] | Borah Slater K, Moraes L, Xu Y, et al. Metabolic flux reprogramming in Mycobacterium tuberculosis⁃infected human macrophages[J]. Front Microbiol, 2023,14:1289987. doi: 10. 3389/fmicb.2023.1289987. |
[25] | Rodriguez AE, Ducker GS, Billingham LK, et al. Serine metabolism supports macrophage IL⁃1beta production[J]. Cell Metab, 2019,29(4):1003⁃1011. doi:10.1016/j.cmet.2019.01.014. |
[26] | Shan X, Hu P, Ni L, et al. Serine metabolism orchestrates macrophage polarization by regulating the IGF1⁃p38 axis[J]. Cell Mol Immunol, 2022,19(11):1263⁃1278. doi: 10.1038/s41423⁃022⁃00925⁃7. |
[27] | Korte J, Alber M, Trujillo CM, et al. Trehalose⁃6⁃phosphate⁃mediated toxicity determines essentiality of OtsB2 in Mycobacterium tuberculosis in vitro and in mice[J]. PLoS Pathog, 2016,12(12):e1006043. doi: 10.1371/journal.ppat.100 6043. |
[28] | Baardman J, Verberk SGS, Prange KHM, et al. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia[J]. Cell Rep, 2018,25(8):2044⁃2052. doi: 10.1016/j.celrep.2018.10.092. |
[29] | Park HY, Kang HS, Im SS. Recent insight into the correlation of SREBP⁃mediated lipid metabolism and innate immune response[J]. J Mol Endocrinol, 2018, 61(3): 123⁃131. doi:10. 1530/JME⁃17⁃0289. |
[30] | Das UN. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: a review[J]. J Adv Res, 2018,11:57⁃66. doi: 10.1016/j.jare.2018.01.001. |
[31] | Seidel V, Taylor PW. In vitro activity of extracts and constituents of pelagonium against rapidly growing mycobacteria[J]. Int J Antimicrob Agents, 2004,23(6):613⁃619. doi: 10.1016/j.ijantimicag.2003.11.008. |
[32] | Xu M, Wang X, Li Y, et al. Arachidonic acid metabolism controls macrophage alternative activation through regulating oxidative phosphorylation in PPARγ dependent manner[J]. Front Immunol, 2021,12:618501. doi: 10.3389/fimmu.2021.61 8501. |
[33] | Li X, Kempf S, Günther S, et al. 11,12⁃EET regulates PPAR⁃γ expression to modulate TGF⁃β⁃mediated macrophage polarization[J]. Cells, 2023,12(5):700. doi: 10.3390/cells12050700. |
[34] | Zhou Y, Liu T, Duan JX, et al. Soluble epoxide hydrolase inhibitor attenuates lipopolysaccharide⁃induced acute lung injury and improves survival in mice[J]. Shock, 2017,47(5):638⁃645. doi: 10.1097/SHK.0000000000000767. |
[35] | Liu W, Wang B, Ding H, et al. A potential therapeutic effect of CYP2C8 overexpression on anti⁃TNF⁃α activity[J]. Int J Mol Med, 2014,34(3):725⁃732. doi: 10.3892/ijmm.2014.1844. |
[36] | Chen J, Purvis G, Collotta D, et al. RvE1 attenuates polymicrobial sepsis⁃induced cardiac dysfunction and enhances bacterial clearance[J]. Front Immunol, 2020,11:2080. doi: 10.3389/fimmu.2020.02080. |
[37] | Zhang Y, Olson RM, Brown CR. Macrophage LTB(4) drives efficient phagocytosis of Borrelia burgdorferi via BLT1 or BLT2[J]. J Lipid Res, 2017,58(3):494⁃503. doi: 10.1194/jlr.M06 8882. |
[38] | Pernet E, Downey J, Vinh DC, et al. Leukotriene B(4)⁃type I interferon axis regulates macrophage⁃mediated disease tolerance to influenza infection[J]. Nat Microbiol, 2019,4(8):1389⁃1400. doi: 10.1038/s41564⁃019⁃0444⁃3. |
[1] | Yang Kaiying, Tian Bowen, Lan Chaoting. Untargeted metabolomics analysis-based metabolic characterization of hemangioma-derived endothelial cells [J]. Chinese Journal of Dermatology, 2024, 57(7): 601-609. |
[2] | Li Shuo, Sun Yuanyuan, Hao Ruiying, Xu Yanyan, Liu Zhao, Jing Tingting, Li Xiaojing, Zhang Xiujuan. Effect of macrophage-derived exosomes on the morphological transformation of Candida albicans [J]. Chinese Journal of Dermatology, 2024, 57(6): 539-546. |
[3] | Chen Zhu, Dong Liping, Xiao Fengli, . Research progress in atopic diseases from the perspective of metabolomics [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220366-e20220366. |
[4] | Zhao Ying, Yang Yong, Wang Yan, Wei Qin, Wang Yetao. Role of macrophages in the pathogenesis and treatment of keloids [J]. Chinese Journal of Dermatology, 2024, 0(3): 20240090-e20240090. |
[5] | Pan Ruoxin, Gu Duoduo, Zhang Yue, Li Min, Tao Meng, Xu Yang. Metabolomics in rosacea [J]. Chinese Journal of Dermatology, 2024, 57(2): 178-181. |
[6] | Ruan Jian, Chen Hong, Li Yuning, Li Miaozhong, Zhou Xiaoling, He Xinkun, Li Xueyuan. A case of septic arthritis induced by Mycobacterium marinum infection [J]. Chinese Journal of Dermatology, 2024, 57(11): 1054-1056. |
[7] | Yuan Zhaojun, Sun Lele, Sun Yuanhang, Zhang Yong, Cao Yuanyuan, Sang Xu, Li Zige, Wang Meng, Cheng Yanru, Li Yanyan, Pan Qing, Bao Fangfang, Liu Hong, Zhang Furen. Establishment and evaluation of a quantitative PCR-based assay for the detection of Mycobacterium marinum in skin biopsy specimens [J]. Chinese Journal of Dermatology, 2024, 57(11): 1022-1028. |
[8] | Tang Shiqin, Hao Ruiying, He Huina, Tian Yanan, Xu Yanyan, Li Xiaojing, Jing Tingting, . Effect of IDO1 on functional changes in macrophages in vaginal tissues from mouse models of vulvovaginal candidiasis [J]. Chinese Journal of Dermatology, 2024, 57(10): 931-939. |
[9] | Xu Xili, Li Dongning, Duan Han, Wang Fei. Analysis of plasma amino acid profiles in adolescents and adults with atopic dermatitis [J]. Chinese Journal of Dermatology, 2023, 56(8): 742-750. |
[10] | Yao Mengyuan, Huai Pengcheng, Zhu Jiaming, Liu Jian, Zhang Furen. Epidemiological characteristics of Mycobacterium marinum infection cases in a hospital in Shandong province, 2019 to 2021 [J]. Chinese Journal of Dermatology, 2023, 56(4): 294-300. |
[11] | Yang Lu, Duan Zhimin, He Yanyan, Wang Jianing, Chen Qing, Chen Xu, Li Min, . A preliminary study on Candida albicans-induced pyroptosis of murine bone marrow-derived macrophages [J]. Chinese Journal of Dermatology, 2023, 56(4): 301-308. |
[12] | Chen Quan, Tang Yi, Li Huaping, Wu Weihong, Deng Huiyan, Chen Jiaoquan, Chen Lezi, Li Zhenjie, Zhu Huilan. Characterisation of serum lipidomic profiles in patients with chronic actinic dermatitis based on liquid chromatography-mass spectrometry [J]. Chinese Journal of Dermatology, 2023, 56(12): 1107-1114. |
[13] | Wu Shuhui, Zhu Mingfang, Wei Lu, Zhang Xi, Qin Qiuyan, Wang Chang. Effect of pomegranate peel polyphenols on mTOR/HIF-1α/IL-17 signaling pathway in a rat auriclular model of acne [J]. Chinese Journal of Dermatology, 2022, 55(6): 511-516. |
[14] | Yang Lu, Duan Zhimin, Xu Song, Chen Xu, Li Min, . Effect of Aspergillus fumigatus on the autophagic flux in murine macrophages: a preliminary study [J]. Chinese Journal of Dermatology, 2022, 55(11): 962-968. |
[15] | Lin Zehang, Duan Zhimin, Xu Song, Chen Xu, Li Min. Regulatory effect of Candida albicans hyphae on the key autophagy-related molecule microtubule-associated protein 1 light chain 3 in murine bone marrow-derived macrophages [J]. Chinese Journal of Dermatology, 2021, 54(3): 189-195. |
|