Chinese Journal of Dermatology ›› 2024, Vol. 57 ›› Issue (10): 931-939.doi: 10.35541/cjd.20240163
• Research Reports • Previous Articles Next Articles
Tang Shiqin1, Hao Ruiying1, He Huina1, Tian Yanan1, Xu Yanyan2,3, Li Xiaojing3,4, Jing Tingting2,3
Received:
2024-03-27
Revised:
2024-08-06
Online:
2024-10-15
Published:
2024-09-29
Contact:
Li Xiaojing; Xu Yanyan
E-mail:zlmdsh@126.com; xuyanyan0308@163.com
Supported by:
Tang Shiqin, Hao Ruiying, He Huina, Tian Yanan, Xu Yanyan, Li Xiaojing, Jing Tingting, . Effect of IDO1 on functional changes in macrophages in vaginal tissues from mouse models of vulvovaginal candidiasis[J]. Chinese Journal of Dermatology, 2024, 57(10): 931-939.doi:10.35541/cjd.20240163
[1] | Senthilganesh J, Ravichandran S, Durairajan R, et al. Metal sulfide nanoparticles based phytolectin scaffolds inhibit vulvovaginal candidiasis causing Candida albicans[J]. J Clust Sci, 2021,33(4):1361⁃1372. doi: 10.1007/s10876⁃021⁃02061⁃0. |
[2] | Willems H, Ahmed SS, Liu J, et al. Vulvovaginal candidiasis: a current understanding and burning questions[J]. J Fungi (Basel), 2020,6(1):27. doi: 10.3390/jof6010027. |
[3] | 段志敏, 杜蕾蕾, 刘彩霞, 等. Dectin⁃1介导人急性单核细胞白血病细胞巨噬细胞样细胞吞噬白念珠菌的作用研究[J]. 中华皮肤科杂志, 2018,51(6):425⁃428. doi: 10.3760/cma.j.issn. 0412⁃4030.2018.06.006. |
[4] | König A, Hube B, Kasper L. The dual function of the fungal toxin candidalysin during Candida albicans⁃macrophage interaction and virulence[J]. Toxins (Basel), 2020,12(8):469. doi: 10.3390/toxins12080469. |
[5] | Domingues N, Gonçalves T, Girao H. Phagolysosomal remodeling to confine Candida albicans in the macrophage[J]. Trends Microbiol, 2022,30(6):519⁃523. doi: 10.1016/j.tim.2022.03.004. |
[6] | Zhang Y, Tang C, Zhang Z, et al. Deletion of the ATP2 gene in Candida albicans blocks its escape from macrophage clearance[J]. Front Cell Infect Microbiol, 2021,11:643121. doi: 10.3389/fcimb.2021.643121. |
[7] | Wang Y, Lin Q, Zhang H, et al. M2 macrophage⁃derived exosomes promote diabetic fracture healing by acting as an immunomodulator[J]. Bioact Mater, 2023,28:273⁃283. doi: 10. 1016/j.bioactmat.2023.05.018. |
[8] | Cervenka I, Agudelo LZ, Ruas JL. Kynurenines: tryptophan's metabolites in exercise, inflammation, and mental health[J]. Science, 2017,357(6349):eaaf9794. doi: 10.1126/science.aaf 9794. |
[9] | Sorgdrager F, Naudé P, Kema IP, et al. Tryptophan metabolism in inflammaging: from biomarker to therapeutic target[J]. Front Immunol, 2019,10:2565. doi: 10.3389/fimmu.2019.02565. |
[10] | Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses[J]. Trends Immunol, 2013,34(3):137⁃143. doi: 10.1016/j.it.2012.10.001. |
[11] | Lashgari NA, Roudsari NM, Shayan M, et al. IDO/kynurenine; novel insight for treatment of inflammatory diseases[J]. Cytokine, 2023,166:156206. doi: 10.1016/j.cyto.2023.156206. |
[12] | Mellor AL, Munn DH. Tryptophan catabolism and T⁃cell tolerance: immunosuppression by starvation?[J]. Immunol Today, 1999,20(10):469⁃473. doi: 10.1016/s0167⁃5699(99)01520⁃0. |
[13] | Fallarino F, Grohmann U, You S, et al. The combined effects of tryptophan starvation and tryptophan catabolites down⁃regulate T cell receptor zeta⁃chain and induce a regulatory phenotype in naive T cells[J]. J Immunol, 2006,176(11):6752⁃6761. doi: 10.4049/jimmunol.176.11.6752. |
[14] | Bozza S, Fallarino F, Pitzurra L, et al. A crucial role for tryptophan catabolism at the host/Candida albicans interface[J]. J Immunol, 2005,174(5):2910⁃2918. doi: 10.4049/jimmunol. 174.5.2910. |
[15] | De Luca A, Carvalho A, Cunha C, et al. IL⁃22 and IDO1 affect immunity and tolerance to murine and human vaginal candidiasis[J]. PLoS Pathog, 2013,9(7):e1003486. doi: 10.1371/journal.ppat.1003486. |
[16] | Deng W, Su Z, Liang P, et al. Single⁃cell immune checkpoint landscape of PBMCs stimulated with Candida albicans[J]. Emerg Microbes Infect, 2021,10(1):1272⁃1283. doi: 10.1080/22221751.2021.1942228. |
[17] | Li H, Yuan Y, Chen H, et al. Indoleamine 2,3⁃dioxygenase mediates the therapeutic effects of adipose⁃derived stromal/stem cells in experimental periodontitis by modulating macrophages through the kynurenine⁃AhR⁃NRF2 pathway[J]. Mol Metab, 2022,66:101617. doi: 10.1016/j.molmet.2022.101617. |
[18] | Ji R, Ma L, Chen X, et al. Characterizing the distributions of IDO⁃1 expressing macrophages/microglia in human and murine brains and evaluating the immunological and physiological roles of IDO⁃1 in RAW264.7/BV⁃2 cells[J]. PLoS One, 2021,16(11):e0258204. doi: 10.1371/journal.pone.0258204. |
[19] | Yeung AW, Terentis AC, King NJ, et al. Role of indoleamine 2,3⁃dioxygenase in health and disease[J]. Clin Sci (Lond), 2015,129(7):601⁃672. doi: 10.1042/CS20140392. |
[20] | Ravishankar B, Liu H, Shinde R, et al. The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity[J]. Proc Natl Acad Sci U S A, 2015,112(34):10774⁃10779. doi: 10.1073/pnas.1504276112. |
[21] | Cady SG, Sono M. 1⁃Methyl⁃DL⁃tryptophan, beta⁃(3⁃benzofuranyl)⁃DL⁃alanine (the oxygen analog of tryptophan), and beta⁃[3⁃benzo(b)thienyl]⁃DL⁃alanine (the sulfur analog of tryptophan) are competitive inhibitors for indoleamine 2,3⁃dioxygenase[J]. Arch Biochem Biophys, 1991,291(2):326⁃333. doi: 10.1016/0003⁃9861(91)90142⁃6. |
[22] | Knutson KL, Disis ML. Tumor antigen⁃specific T helper cells in cancer immunity and immunotherapy[J]. Cancer Immunol Immunother, 2005,54(8):721⁃728. doi: 10.1007/s00262⁃004⁃0653⁃2. |
[23] | Dang M, Zeng X, Chen B, et al. Interferon⁃γ mediates the protective effects of soluble receptor for advanced glycation end⁃product in myocardial ischemia/reperfusion[J]. Lab Invest, 2019,99(3):358⁃370. doi: 10.1038/s41374⁃018⁃0102⁃z. |
[24] | 孔小锋, 陈琢. 昆明小鼠白色念珠菌性阴道炎模型构建条件的摸索[J]. 中西医结合研究, 2009,1(5):236⁃240. doi: 10. 3870/j.issn.1674⁃4616.2009.05.004. |
[25] | Curti A, Trabanelli S, Salvestrini V, et al. The role of indoleamine 2,3⁃dioxygenase in the induction of immune tolerance: focus on hematology[J]. Blood, 2009,113(11):2394⁃2401. doi: 10.1182/blood⁃2008⁃07⁃144485. |
[26] | Mándi Y, Stone TW, Guillemin GJ, et al. Editorial: multiple implications of the kynurenine pathway in inflammatory diseases: diagnostic and therapeutic applications[J]. Front Immunol, 2022,13:860867. doi: 10.3389/fimmu.2022.860867. |
[27] | Lee SM, Park HY, Suh YS, et al. Inhibition of acute lethal pulmonary inflammation by the IDO⁃AhR pathway[J]. Proc Natl Acad Sci U S A, 2017,114(29):E5881⁃E5890. doi: 10.1073/pnas.1615280114. |
[28] | Romani L, Zelante T, De Luca A, et al. Indoleamine 2,3⁃dioxygenase (IDO) in inflammation and allergy to Aspergillus[J]. Med Mycol, 2009,47(Suppl 1):S154⁃161. doi: 10.1080/13693780802139867. |
[29] | Zelante T, Pieraccini G, Scaringi L, et al. Learning from other diseases: protection and pathology in chronic fungal infections[J]. Semin Immunopathol, 2016,38(2):239⁃248. doi: 10.1007/s00281⁃015⁃0523⁃3. |
[30] | Choera T, Zelante T, Romani L, et al. A multifaceted role of tryptophan metabolism and indoleamine 2,3⁃dioxygenase activity in Aspergillus fumigatus⁃host interactions[J]. Front Immunol, 2017,8:1996. doi: 10.3389/fimmu.2017.01996. |
[31] | Fidel PL Jr, Sobel JD. Immunopathogenesis of recurrent vulvovaginal candidiasis[J]. Clin Microbiol Rev, 1996,9(3):335⁃348. doi: 10.1128/CMR.9.3.335. |
[32] | Yano J, Peters BM, Noverr MC, et al. Novel mechanism behind the immunopathogenesis of vulvovaginal candidiasis: "neutrophil anergy"[J]. Infect Immun, 2018,86(3):e00684⁃00617. doi: 10. 1128/IAI.00684⁃17. |
[33] | Silva MT. Macrophage phagocytosis of neutrophils at inflammatory/infectious foci: a cooperative mechanism in the control of infection and infectious inflammation[J]. J Leukoc Biol, 2011,89(5):675⁃683. doi: 10.1189/jlb.0910536. |
[34] | Patin EC, Thompson A, Orr SJ. Pattern recognition receptors in fungal immunity[J]. Semin Cell Dev Biol, 2019,89:24⁃33. doi: 10.1016/j.semcdb.2018.03.003. |
[35] | Wu MY, Lu JH. Autophagy and macrophage functions: inflammatory response and phagocytosis[J]. Cells, 2019,9(1):70. doi: 10.3390/cells9010070. |
[36] | Wang Y, Li H, Xu Z, et al. Exosomes released by Brucella⁃infected macrophages inhibit the intracellular survival of Brucella by promoting the polarization of M1 macrophages[J]. Microb Biotechnol, 2023,16(7):1524⁃1535. doi: 10.1111/1751⁃7915.14274. |
[37] | Zhang L, Zhang K, Li H, et al. Cryptococcus neoformans⁃infected macrophages release proinflammatory extracellular vesicles: insight into their components by multi⁃omics[J]. mBio, 2021,12(2):e00279⁃00221. doi: 10.1128/mBio.00279⁃21. |
[38] | Brauer VS, Pessoni AM, Bitencourt TA, et al. Extracellular vesicles from Aspergillus flavus induce M1 polarization in vitro[J]. mSphere, 2020,5(3):e00190⁃00120. doi: 10.1128/mSphere. 00190⁃20. |
[39] | Yu F, Jiang W, Zhang L, et al. IDO regulates macrophage functions by inhibiting the CCL2/CCR2 signaling pathway in fungal keratitis[J]. Cornea, 2023,42(8):1005⁃1015. doi: 10. 1097/ICO.0000000000003309. |
[40] | Lin L, Wang M, Zeng J, et al. Sequence variation of Candida albicans Sap2 enhances fungal pathogenicity via complement evasion and macrophage M2⁃like phenotype induction[J]. Adv Sci (Weinh), 2023,10(20):e2206713. doi: 10.1002/advs.2022 06713. |
[41] | Wang XF, Wang HS, Wang H, et al. The role of indoleamine 2,3⁃dioxygenase (IDO) in immune tolerance: focus on macrophage polarization of THP⁃1 cells[J]. Cell Immunol, 2014,289(1⁃2):42⁃48. doi: 10.1016/j.cellimm.2014.02.005. |
[42] | Lee S, Zhang QZ, Karabucak B, et al. DPSCs from inflamed pulp modulate macrophage function via the TNF⁃α/IDO axis[J]. J Dent Res, 2016,95(11):1274⁃1281. doi: 10.1177/002203451 6657817. |
[43] | Jiang N, Zhao GQ, Lin J, et al. Expression of indoleamine 2,3⁃dioxygenase in a murine model of Aspergillus fumigatus keratitis[J]. Int J Ophthalmol, 2016,9(4):491⁃496. doi: 10.18240/ijo. 2016.04.03. |
[44] | Hill M, Tanguy⁃Royer S, Royer P, et al. IDO expands human CD4+CD25high regulatory T cells by promoting maturation of LPS⁃treated dendritic cells[J]. Eur J Immunol, 2007,37(11):3054⁃3062. doi: 10.1002/eji.200636704. |
[45] | Bracho⁃Sanchez E, Rocha FG, Bedingfield SK, et al. Suppression of local inflammation via galectin⁃anchored indoleamine 2,3⁃dioxygenase[J]. Nat Biomed Eng, 2023,7(9):1156⁃1169. doi: 10.1038/s41551⁃023⁃01025⁃1. |
[1] | Li Shuo, Sun Yuanyuan, Hao Ruiying, Xu Yanyan, Liu Zhao, Jing Tingting, Li Xiaojing, Zhang Xiujuan. Effect of macrophage-derived exosomes on the morphological transformation of Candida albicans [J]. Chinese Journal of Dermatology, 2024, 57(6): 539-546. |
[2] | Zhao Ying, Yang Yong, Wang Yan, Wei Qin, Wang Yetao. Role of macrophages in the pathogenesis and treatment of keloids [J]. Chinese Journal of Dermatology, 2024, 0(3): 20240090-e20240090. |
[3] | Yang Lu, Duan Zhimin, He Yanyan, Wang Jianing, Chen Qing, Chen Xu, Li Min, . A preliminary study on Candida albicans-induced pyroptosis of murine bone marrow-derived macrophages [J]. Chinese Journal of Dermatology, 2023, 56(4): 301-308. |
[4] | Zhang Ruijun, Su Xiaorui, Li Ting, He Xiao, Yang Yuanwen, Kang Yuying, . Analysis of pathogens of mucosal candidiasis and their resistance to drugs in a third-grade class-A hospital in Taiyuan, Shanxi [J]. Chinese Journal of Dermatology, 2023, 56(1): 56-58. |
[5] | Yang Lu, Duan Zhimin, Li Min. Mechanisms underlying the resistance of Candida albicans to echinocandin antifungals [J]. Chinese Journal of Dermatology, 2022, 55(12): 1114-1117. |
[6] | Yang Lu, Duan Zhimin, Xu Song, Chen Xu, Li Min, . Effect of Aspergillus fumigatus on the autophagic flux in murine macrophages: a preliminary study [J]. Chinese Journal of Dermatology, 2022, 55(11): 962-968. |
[7] | Ding Tiantian, Cui Baohong, Mi Shuhong, Zhang Yang, Zheng Hailin, Shi Jihai, Liu Weida. Comparison of drug susceptibility of and drug resistance mutations in fluconazole-resistant Candida albicans strains from superficial and deep infections [J]. Chinese Journal of Dermatology, 2022, 55(10): 874-878. |
[8] | Yang Rui, Kong Qingtao, Xu Jie, Zhang Chen, Sang Hong. Screening of susceptibility genes and an immunological study in a patient with recurrent cervical lymphadenitis caused by Candida albicans [J]. Chinese Journal of Dermatology, 2022, 55(1): 50-54. |
[9] | Lin Zehang, Duan Zhimin, Xu Song, Chen Xu, Li Min. Regulatory effect of Candida albicans hyphae on the key autophagy-related molecule microtubule-associated protein 1 light chain 3 in murine bone marrow-derived macrophages [J]. Chinese Journal of Dermatology, 2021, 54(3): 189-195. |
[10] | Wang Ruojun, Li Ruoyu. Adverse reactions to interleukin-17A and its receptor antagonists in the treatment of psoriasis [J]. Chinese Journal of Dermatology, 2021, 54(2): 170-173. |
[11] | . In vitro inhibitory effect of Fe3O4 nanozymes against Candida albicans [J]. Chinese Journal of Dermatology, 2020, 53(7): 554-556. |
[12] | Lyu Yan, Zhang Yanli, Zhang Zhanpeng, Zhao Yajing, Zhang Yishan, Li Shuixiu, Zhang Hong. ATP1 promotes Candida albicans to escape from macrophage killing through regulating oxidative stress [J]. Chinese Journal of Dermatology, 2020, 53(7): 519-524. |
[13] | Zhang Shujuan, Tang Yaping, Liang Jingyao, Liu Yumei. Curcumin can reverse the impairment of phagocytic function of macrophages induced by exosomes from patients with systemic lupus erythematosus [J]. Chinese Journal of Dermatology, 2019, 52(6): 378-382. |
[14] | . Roles of Dectin-1 in phagocytosis of Candida albicans by macrophage-like cells derived from a human acute monocytic leukemia cell line THP-1 [J]. Chinese Journal of Dermatology, 2018, 51(6): 425-428. |
[15] | . Characteristics of Treponema pallidum?induced macrophage?derived exosomes and its effect on proliferation of human umbilical vein endothelial cells [J]. Chinese Journal of Dermatology, 2018, 51(5): 341-346. |
|