| [1] | 罗帅寒天, 龙海, 陆前进. 2018年系统性红斑狼疮研究新进展[J]. 中华皮肤科杂志, 2020,53(8):665⁃667. doi: 10.35541/cjd. 20190298. | 
																													
																							| [2] | 陆前进, 罗帅寒天. 系统性红斑狼疮的诊疗进展[J]. 中华皮肤科杂志, 2018,51(1):1⁃4. doi: 10.3760/cma.j.issn.0412⁃4030. 2018.01.001. | 
																													
																							| [3] | Smith KG, Clatworthy MR. FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications[J]. Nat Rev Immunol, 2010,10(5):328⁃343. doi: 10.1038/nri2762. | 
																													
																							| [4] | Hu W, Zhang Y, Sun X, et al. FcγRIIB⁃I232T polymorphic change allosterically suppresses ligand binding[J]. Elife, 2019,8doi: 10.7554/eLife.46689. | 
																													
																							| [5] | Alsaab HO, Sau S, Alzhrani R, et al. PD⁃1 and PD⁃L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome[J]. Front Pharmacol, 2017,8:561. doi: 10.3389/fphar.2017.00561. | 
																													
																							| [6] | Han X, Vesely MD, Yang W, et al. PD⁃1H (VISTA)⁃mediated suppression of autoimmunity in systemic and cutaneous lupus erythematosus[J]. Sci Transl Med, 2019,11(522). doi: 10.1126/scitranslmed.aax1159. | 
																													
																							| [7] | Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease[J]. Nature, 2016,535(7610):75⁃84. doi: 10.1038/nature18848. | 
																													
																							| [8] | Azzouz D, Omarbekova A, Heguy A, et al. Lupus nephritis is linked to disease⁃activity associated expansions and immunity to a gut commensal[J]. Ann Rheum Dis, 2019,78(7):947⁃956. doi: 10.1136/annrheumdis⁃2018⁃214856. | 
																													
																							| [9] | Wu H, Huang X, Qiu H, et al. High salt promotes autoimmunity by TET2⁃induced DNA demethylation and driving the differentiation of Tfh cells[J]. Sci Rep, 2016,6:28065. doi: 10. 1038/srep28065. | 
																													
																							| [10] | Zhang D, Jin W, Wu R, et al. High glucose intake exacerbates autoimmunity through reactive⁃oxygen⁃species⁃mediated TGF⁃β cytokine activation[J]. Immunity, 2019,51(4):671⁃681.e5. doi: 10.1016/j.immuni.2019.08.001. | 
																													
																							| [11] | Nawijn MC, Alendar A, Berns A. For better or for worse: the role of Pim oncogenes in tumorigenesis[J]. Nat Rev Cancer, 2011,11(1):23⁃34. doi: 10.1038/nrc2986. | 
																													
																							| [12] | Fu R, Xia Y, Li M, et al. Pim⁃1 as a therapeutic target in lupus nephritis[J]. Arthritis Rheumatol, 2019,71(8):1308⁃1318. doi: 10.1002/art.40863. | 
																													
																							| [13] | Aringer M, Costenbader K, Daikh D, et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus[J]. Ann Rheum Dis, 2019,78(9):1151⁃1159. doi: 10.1136/annrheumdis⁃2018⁃214819. | 
																													
																							| [14] | Kaplan MJ, Radic M. Neutrophil extracellular traps: double⁃edged swords of innate immunity[J]. J Immunol, 2012,189(6):2689⁃2695. doi: 10.4049/jimmunol.1201719. | 
																													
																							| [15] | Lood C, Blanco LP, Purmalek MM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus⁃like disease[J]. Nat Med, 2016,22(2):146⁃153. doi: 10.1038/nm.4027. | 
																													
																							| [16] | Moore S, Juo HH, Nielsen CT, et al. Role of neutrophil extracellular traps identify patients at risk of increased disease activity and cardiovascular comorbidity in systemic lupus erythematosus[J]. J Rheumatol, 2019. doi: 10.3899/jrheum.19 0875. | 
																													
																							| [17] | Langefeld CD, Ainsworth HC, Cunninghame Graham DS, et al. Transancestral mapping and genetic load in systemic lupus erythematosus[J]. Nat Commun, 2017,8:16021. doi: 10.1038/ncomms16021. | 
																													
																							| [18] | Reid S, Alexsson A, Frodlund M, et al. High genetic risk score is associated with early disease onset, damage accrual and decreased survival in systemic lupus erythematosus[J]. Ann Rheum Dis, 2020,79(3):363⁃369. doi: 10.1136/annrheumdis⁃2019⁃216227. | 
																													
																							| [19] | Searle SD, Mitnitski A, Gahbauer EA, et al. A standard procedure for creating a frailty index[J]. BMC Geriatr, 2008,8:24. doi: 10.1186/1471⁃2318⁃8⁃24. | 
																													
																							| [20] | Legge A, Kirkland S, Rockwood K, et al. Evaluating the properties of a frailty index and its association with mortality risk among patients with systemic lupus erythematosus[J]. Arthritis Rheumatol, 2019,71(8):1297⁃1307. doi: 10.1002/art.40859. | 
																													
																							| [21] | Wise LM, Stohl W. The safety of belimumab for the treatment of systemic lupus erythematosus[J]. Expert Opin Drug Saf, 2019,18(12):1133⁃1144. doi: 10.1080/14740338.2019.1685978. | 
																													
																							| [22] | Wallace DJ, Ginzler EM, Merrill JT, et al. Safety and efficacy of belimumab plus standard therapy for up to thirteen years in patients with systemic lupus erythematosus[J]. Arthritis Rheumatol, 2019,71(7):1125⁃1134. doi: 10.1002/art.40861. | 
																													
																							| [23] | Davidson JE, Fu Q, Ji B, et al. Renal remission status and longterm renal survival in patients with lupus nephritis: a retrospective cohort analysis[J]. J Rheumatol, 2018,45(5):671⁃677. doi: 10.3899/jrheum.161554. | 
																													
																							| [24] | Blankenship K. GlaxoSmithKline′s benlysta eyes lupus sales boost after kidney trial win[EB/OL]. [2019⁃12⁃18]. https://www.fiercepharma.com/pharma/glaxosmithkline⁃s⁃benlysta⁃scores⁃trial⁃win⁃patients⁃lupus⁃nephritis. | 
																													
																							| [25] | Marcus R, Davies A, Ando K, et al. Obinutuzumab for the First⁃Line Treatment of Follicular Lymphoma[J]. N Engl J Med, 2017,377(14):1331⁃1344. doi: 10.1056/NEJMoa1614598. | 
																													
																							| [26] | Biogen Inc. Biogen announces positive phase 2 study results for cutaneous lupus erythematosus (CLE) and systemic lupus erythematosus (SLE)[EB/OL].[2019⁃12⁃3]. http://investors.biogen.com/news⁃releases/news⁃release⁃details/biogen⁃announces⁃positive⁃phase⁃2⁃study⁃results⁃cutaneous⁃lupus. | 
																													
																							| [27] | Furie RA, Morand EF, Bruce IN, et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP⁃1): a randomised, controlled, phase 3 trial[J]. Lancet Rheumatol, 2019, 1(4): e208⁃e219. doi: 10.1016/S2665⁃9913(19)30076⁃1. | 
																													
																							| [28] | Morand EF, Furie R, Tanaka Y, et al. Trial of anifrolumab in active systemic lupus erythematosus[J]. N Engl J Med, 2020,382(3):211⁃221. doi: 10.1056/NEJMoa1912196. | 
																													
																							| [29] | Furie R, Werth VP, Merola JF, et al. Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus[J]. J Clin Invest, 2019,129(3):1359⁃1371. doi: 10.1172/JCI124466. | 
																													
																							| [30] | Roche Inc. FDA grants breakthrough therapy designation for Roche′s Gazyva (obinutuzumab) in lupus nephritis[EB/OL]. [2019⁃9⁃18]. https://www.roche.com/media/releases/med⁃cor⁃2019⁃09⁃18.htm. | 
																													
																							| [31] | Mathian A, Pha M, Haroche J, et al. Withdrawal of low⁃dose prednisone in SLE patients with a clinically quiescent disease for more than 1 year: a randomised clinical trial[J]. Ann Rheum Dis, 2020,79(3):339⁃346. doi: 10.1136/annrheumdis⁃2019⁃216303. |