| [1] | Yang Y, Luo Z, Hao Y, et al. mTOR⁃mediated Na+/Ca2+ exchange affects cell proliferation and metastasis of melanoma cells[J]. Biomed Pharmacother, 2017,92:744⁃749. doi: 10.1016/j.biopha.2017.05.104. | 
																													
																						| [2] | Zhang H, Chen Z, Zhang A, et al. The role of calcium signaling in melanoma[J]. Int J Mol Sci, 2022,23(3):1010. doi: 10.3390/ijms23031010. | 
																													
																						| [3] | Gandini S, Palli D, Spadola G, et al. Anti⁃hypertensive drugs and skin cancer risk: a review of the literature and meta⁃analysis[J]. Crit Rev Oncol Hematol, 2018,122:1⁃9. doi: 10.1016/j.critrevonc.2017.12.003. | 
																													
																						| [4] | Khananshvili D. The SLC8 gene family of sodium⁃calcium exchangers (NCX) ⁃ structure, function, and regulation in health and disease[J]. Mol Aspects Med, 2013,34(2⁃3):220⁃235. doi: 10.1016/j.mam.2012.07.003. | 
																													
																						| [5] | Liu H, Yu J, Yang L, et al. NCX2 regulates intracellular calcium homeostasis and translocation of HIF⁃1α into the nucleus to inhibit glioma invasion[J]. Biochem Genet, 2023,61(3):979⁃994. doi: 10.1007/s10528⁃022⁃10274⁃9. | 
																													
																						| [6] | Formisano L, Guida N, Mascolo L, et al. Transcriptional and epigenetic regulation of NCX1 and NCX3 in the brain[J]. Cell Calcium, 2020,87:102194. doi: 10.1016/j.ceca.2020.102194. | 
																													
																						| [7] | Liu Z, Cheng Q, Ma X, et al. Suppressing effect of Na+/Ca2+ exchanger (NCX) inhibitors on the growth of melanoma cells[J]. Int J Mol Sci, 2022,23(2):901. doi: 10.3390/ijms 23020901. | 
																													
																						| [8] | Rodrigues T, Estevez G, Tersariol I. Na+/Ca2+ exchangers: unexploited opportunities for cancer therapy?[J]. Biochem Pharmacol, 2019,163:357⁃361. doi: 10.1016/j.bcp.2019.02.032. | 
																													
																						| [9] | Watanabe Y. Cardiac Na+/Ca2+ exchange stimulators among cardioprotective drugs[J]. J Physiol Sci, 2019,69(6):837⁃849. doi: 10.1007/s12576⁃019⁃00721⁃5. | 
																													
																						| [10] | Baldoni S, Del Papa B, Dorillo E, et al. Bepridil exhibits anti⁃leukemic activity associated with NOTCH1 pathway inhibition in chronic lymphocytic leukemia[J]. Int J Cancer, 2018,143(4):958⁃970. doi: 10.1002/ijc.31355. | 
																													
																						| [11] | Zhang S, Kim D, Park M, et al. Suppression of metastatic ovarian cancer cells by bepridil, a calcium channel blocker[J]. Life (Basel), 2023,13(7):1607. doi: 10.3390/life13071607. | 
																													
																						| [12] | Molinaro P, Natale S, Serani A, et al. Genetically modified mice to unravel physiological and pathophysiological roles played by NCX isoforms[J]. Cell Calcium, 2020,87:102189. doi: 10.1016/j.ceca.2020.102189. | 
																													
																						| [13] | Khananshvili D. Structure⁃based function and regulation of NCX variants: updates and challenges[J]. Int J Mol Sci, 2022,24(1):61. doi: 10.3390/ijms24010061. | 
																													
																						| [14] | Loeck T, Schwab A. The role of the Na+/Ca2+⁃exchanger (NCX) in cancer⁃associated fibroblasts[J]. Biol Chem, 2023,404(4):325⁃337. doi: 10.1515/hsz⁃2022⁃0253. | 
																													
																						| [15] | Wang X, Chen Z, Xu J, et al. SLC1A1⁃mediated cellular and mitochondrial influx of R⁃2⁃hydroxyglutarate in vascular endothelial cells promotes tumor angiogenesis in IDH1⁃mutant solid tumors[J]. Cell Res, 2022,32(7):638⁃658. doi: 10.1038/s41422⁃022⁃00650⁃w. | 
																													
																						| [16] | Patergnani S, Danese A, Bouhamida E, et al. Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer[J]. Int J Mol Sci, 2020,21(21):8323. doi: 10.3390/ijms21218323. | 
																													
																						| [17] | Jin Y, Wang Z, He D, et al. Analysis of ferroptosis⁃mediated modification patterns and tumor immune microenvironment characterization in uveal melanoma[J]. Front Cell Dev Biol, 2021,9:685120. doi: 10.3389/fcell.2021.685120. | 
																													
																						| [18] | Liu Y, Li M, Shi D, et al. Higher expression of cation transport regulator⁃like protein 1 (CHAC1) predicts of poor outcomes in uveal melanoma (UM) patients[J]. Int Ophthalmol, 2019,39(12):2825⁃2832. doi: 10.1007/s10792⁃019⁃01129⁃1. | 
																													
																						| [19] | Gagliardi M, Cotella D, Santoro C, et al. Aldo⁃keto reductases protect metastatic melanoma from ER stress⁃independent ferroptosis[J]. Cell Death Dis, 2019,10(12):902. doi: 10.1038/s41419⁃019⁃2143⁃7. | 
																													
																						| [20] | Iurlaro R, Muñoz⁃Pinedo C. Cell death induced by endoplasmic reticulum stress[J]. FEBS J, 2016,283(14):2640⁃2652. doi: 10.1111/febs.13598. | 
																													
																						| [21] | Almanza A, Carlesso A, Chintha C, et al. Endoplasmic reticulum stress signalling ⁃ from basic mechanisms to clinical applications[J]. FEBS J, 2019,286(2):241⁃278. doi: 10.1111/febs.14608. | 
																													
																						| [22] | Humeau J, Bravo⁃San Pedro JM, Vitale I, et al. Calcium signaling and cell cycle: progression or death[J]. Cell Calcium, 2018,70:3⁃15. doi: 10.1016/j.ceca.2017.07.006. | 
																													
																						| [23] | Lin ML, Chen SS. Activation of casein kinaseⅡ by gallic acid induces BIK⁃BAX/BAK⁃Mediated ER Ca++⁃ROS⁃dependent apoptosis of human oral cancer cells[J]. Front Physiol, 2017,8:761. doi: 10.3389/fphys.2017.00761. | 
																													
																						| [24] | Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities[J]. Nat Rev Drug Discov, 2008,7(12):1013⁃1030. doi: 10.1038/nrd 2755. |