中华皮肤科杂志 ›› 2024, e20230109.doi: 10.35541/cjd.20230109
严可心 张韡 宋昊 徐秀莲
收稿日期:
2023-02-28
修回日期:
2023-12-09
发布日期:
2024-03-11
通讯作者:
徐秀莲
E-mail:xxlqjl@sina.com
基金资助:
Yan Kexin, Xu Xiulian
Received:
2023-02-28
Revised:
2023-12-09
Published:
2024-03-11
Contact:
Xu Xiulian
E-mail:xxlqjl@sina.com
Supported by:
摘要: 【摘要】 恶性黑色素瘤在皮肤癌中最具侵袭性,其诊断和治疗仍是一个艰巨的挑战。目前,晚期黑色素瘤的治疗方法有免疫治疗、化学疗法、分子靶向治疗、放射治疗、光动力疗法、光热疗法、基因治疗等,但是它们的治疗效果有限。新兴的纳米材料在癌症的诊断和治疗中,能够提高药物的生物利用度,并且精准靶向癌细胞。本文综述用于恶性黑色素瘤的诊断和不同治疗方法中的一些纳米颗粒的最新研究进展。
严可心 张韡 宋昊 徐秀莲. 纳米医学在恶性黑色素瘤中的诊断和治疗新策略[J]. 中华皮肤科杂志, 2024,e20230109. doi:10.35541/cjd.20230109
Yan Kexin, Xu Xiulian. Nanomedicine: a new strategy for the diagnosis and treatment of melanoma[J]. Chinese Journal of Dermatology,2024,e20230109. doi:10.35541/cjd.20230109
[1] | Yang K, Oak A, Slominski RM, et al. Current molecular markers of melanoma and treatment targets[J]. Int J Mol Sci, 2020,21(10):3535. doi: 10.3390/ijms21103535. |
[2] | Al⁃Zoubi MS, Al⁃Zoubi RM. Nanomedicine tactics in cancer treatment: challenge and hope[J]. Crit Rev Oncol Hematol, 2022,174:103677. doi: 10.1016/j.critrevonc.2022.103677. |
[3] | Peng S, Xiao F, Chen M, et al. Tumor⁃microenvironment⁃responsive nanomedicine for enhanced cancer immunotherapy[J]. Adv Sci (Weinh), 2022,9(1):e2103836. doi: 10.1002/advs. 202103836. |
[4] | Farjadian F, Ghasemi A, Gohari O, et al. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities[J]. Nanomedicine (Lond), 2019,14(1):93⁃126. doi: 10.2217/nnm⁃2018⁃0120. |
[5] | Wang P, Yang W, Shen S, et al. Differential diagnosis and precision therapy of two typical malignant cutaneous tumors leveraging their tumor microenvironment: a photomedicine strategy[J]. ACS Nano, 2019,13(10):11168⁃11180. doi: 10.1021/ acsnano.9b04070. |
[6] | Portilho FL, Helal⁃Neto E, Cabezas SS, et al. Magnetic core mesoporous silica nanoparticles doped with dacarbazine and labelled with 99mTc for early and differential detection of metastatic melanoma by single photon emission computed tomography[J]. Artif Cells Nanomed Biotechnol, 2018,46(sup1):1080⁃1087. doi: 10.1080/21691401.2018.1443941. |
[7] | Zou Y, Wei Y, Sun Y, et al. Cyclic RGD⁃functionalized and disulfide⁃crosslinked iodine⁃rich polymersomes as a robust and smart theranostic agent for targeted CT imaging and chemotherapy of tumor[J]. Theranostics, 2019,9(26):8061⁃8072. doi: 10.7150/thno.37184. |
[8] | Qiu X, Wu X, Fang X, et al. Raman spectroscopy combined with deep learning for rapid detection of melanoma at the single cell level[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2023,286:122029. doi: 10.1016/j.saa.2022.122029. |
[9] | Zhang Y, Takahashi Y, Hong SP, et al. High⁃resolution label⁃free 3D mapping of extracellular pH of single living cells[J]. Nat Commun, 2019,10(1):5610. doi: 10.1038/s41467⁃019⁃13535⁃1. |
[10] | Ou YC, Wen X, Johnson CA, et al. Multimodal multiplexed immunoimaging with nanostars to detect multiple immuno⁃markers and monitor response to immunotherapies[J]. ACS Nano, 2020,14(1):651⁃663. doi: 10.1021/acsnano.9b07326. |
[11] | Jenkins RW, Fisher DE. Treatment of advanced melanoma in 2020 and beyond[J]. J Invest Dermatol, 2021,141(1):23⁃31. doi: 10.1016/j.jid.2020.03.943. |
[12] | Carlino MS, Larkin J, Long GV. Immune checkpoint inhibitors in melanoma[J]. Lancet, 2021,398(10304):1002⁃1014. doi: 10. 1016/S0140⁃6736(21)01206⁃X. |
[13] | Yang X, Fan J, Wu Y, et al. Synthetic multiepitope neoantigen DNA vaccine for personalized cancer immunotherapy[J]. Nanomedicine, 2021,37:102443. doi: 10.1016/j.nano.2021.102443. |
[14] | Hu M, Zhang J, Kong L, et al. Immunogenic hybrid nanovesicles of liposomes and tumor⁃derived nanovesicles for cancer immunochemotherapy[J]. ACS Nano, 2021,15(2):3123⁃3138. doi: 10.1021/acsnano.0c09681. |
[15] | Salotto KE, Olson WC Jr, Pollack KE, et al. A nano⁃enhanced vaccine for metastatic melanoma immunotherapy[J]. Cancer Drug Resist, 2022,5(3):829⁃845. doi: 10.20517/cdr.2021.132. |
[16] | Sun Y, Lu D, Yin Y, et al. PTENα functions as an immune suppressor and promotes immune resistance in PTEN⁃mutant cancer[J]. Nat Commun, 2021,12(1):5147. doi: 10.1038/s41467⁃021⁃25417⁃6. |
[17] | Lin YX, Wang Y, Ding J, et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models[J]. Sci Transl Med, 2021,13(599):eaba9772. doi: 10.1126/scitranslmed.aba9772. |
[18] | Christofides A, Strauss L, Yeo A, et al. The complex role of tumor⁃infiltrating macrophages[J]. Nat Immunol, 2022,23(8):1148⁃1156. doi: 10.1038/s41590⁃022⁃01267⁃2. |
[19] | Rao L, Zhao SK, Wen C, et al. Activating macrophage⁃mediated cancer immunotherapy by genetically edited nanoparticles[J]. Adv Mater, 2020,32(47):e2004853. doi: 10.1002/adma.202004853. |
[20] | Guo W, Wang H, Li C. Signal pathways of melanoma and targeted therapy[J]. Signal Transduct Target Ther, 2021,6(1):424. doi: 10.1038/s41392⁃021⁃00827⁃6. |
[21] | Epshtein Y, Blau R, Pisarevsky E, et al. Polyglutamate⁃based nanoconjugates for image⁃guided surgery and post⁃operative melanoma metastases prevention[J]. Theranostics, 2022,12(14):6339⁃6362. doi: 10.7150/thno.72941. |
[22] | Zhang MJ, Liang MY, Yang SC, et al. Bioengineering of BRAF and COX2 inhibitor nanogels to boost the immunotherapy of melanoma via pyroptosis[J]. Chem Commun (Camb), 2023,59(7):932⁃935. doi: 10.1039/d2cc05498a. |
[23] | Pisarevsky E, Blau R, Epshtein Y, et al. Rational design of polyglutamic acid delivering an optimized combination of drugs targeting mutated BRAF and MEK in melanoma[J]. Adv Ther (Weinh), 2020,3(8):2000028 [pii]. doi: 10.1002/adtp.202000028. |
[24] | Shinkuma S. Advances in gene therapy and their application to skin diseases: a review[J]. J Dermatol Sci, 2021,103(1):2⁃9. doi: 10.1016/j.jdermsci.2021.05.004. |
[25] | Liu J, Yang L, Yuan X, et al. Targeted nanotherapeutics using LACTB gene therapy against melanoma[J]. Int J Nanomedicine, 2021,16:7697⁃7709. doi: 10.2147/IJN.S331519. |
[26] | Ma Y, Lin H, Wang P, et al. A miRNA⁃based gene therapy nanodrug synergistically enhances pro⁃inflammatory antitumor immunity against melanoma[J]. Acta Biomater, 2023,155:538⁃553. doi: 10.1016/j.actbio.2022.11.016. |
[27] | Zhang X, Cai A, Gao Y, et al. Treatment of melanoma by nano⁃conjugate⁃delivered wee1 siRNA[J]. Mol Pharm, 2021,18(9):3387⁃3400. doi: 10.1021/acs.molpharmaceut.1c00316. |
[28] | Zhang Z, Xu D, Wang J, et al. Rolling circle amplification⁃based dna nano⁃assembly for targeted drug delivery and gene therapy[J]. Biomacromolecules, 2023,24(1):439⁃448. doi: 10.1021/acs. biomac.2c01271. |
[29] | Zahraie N, Perota G, Dehdari Vais R, et al. Simultaneous chemotherapy/sonodynamic therapy of the melanoma cancer cells using a gold⁃paclitaxel nanostructure[J]. Photodiagnosis Photodyn Ther, 2022,39:102991. doi: 10.1016/j.pdpdt.2022. 102991. |
[30] | Bhattarai RS, Bariwal J, Kumar V, et al. pH⁃sensitive nanomedicine of novel tubulin polymerization inhibitor for lung metastatic melanoma[J]. J Control Release, 2022,350:569⁃583. doi: 10.1016/j.jconrel.2022.08.023. |
[31] | Li A, Zhao J, Fu J, et al. Recent advances of biomimetic nano⁃systems in the diagnosis and treatment of tumor[J]. Asian J Pharm Sci, 2021,16(2):161⁃174. doi: 10.1016/j.ajps.2019.08. 001. |
[32] | Molinaro R, Martinez JO, Zinger A, et al. Leukocyte⁃mimicking nanovesicles for effective doxorubicin delivery to treat breast cancer and melanoma[J]. Biomater Sci, 2020,8(1):333⁃341. doi: 10.1039/c9bm01766f. |
[33] | Wu M, Mei T, Lin C, et al. Melanoma cell membrane biomimetic versatile cus nanoprobes for homologous targeting photoacoustic imaging and photothermal chemotherapy[J]. ACS Appl Mater Interfaces, 2020,12(14):16031⁃16039. doi: 10.1021/acsami. 9b23177. |
[34] | Naidoo C, Kruger CA, Abrahamse H. Photodynamic therapy for metastatic melanoma treatment: a review[J]. Technol Cancer Res Treat, 2018,17:15330338 18791795. doi: 10.1177/1533033 818791795. |
[35] | Huang X, Mu N, Ding Y, et al. Targeted delivery and enhanced uptake of chemo⁃photodynamic nanomedicine for melanoma treatment[J]. Acta Biomater, 2022,147:356⁃365. doi: 10.1016/j.actbio.2022.05.015. |
[36] | Bian Q, Huang L, Xu Y, et al. A facile low⁃dose photosensitizer⁃incorporated dissolving microneedles⁃based composite system for eliciting antitumor immunity and the abscopal effect[J]. ACS Nano, 2021,15(12):19468⁃19479. doi: 10.1021/acsnano. 1c06225. |
[37] | Wang Y, Zhao Z, Liu C, et al. B16 membrane⁃coated vesicles for combined photodynamic therapy and immunotherapy shift immune microenvironment of melanoma[J]. Int J Nanomedicine, 2022,17:855⁃868. doi: 10.2147/IJN.S338488. |
[38] | Hou X, Tao Y, Li X, et al. CD44⁃targeting oxygen self⁃sufficient nanoparticles for enhanced photodynamic therapy against malignant melanoma[J]. Int J Nanomedicine, 2020,15:10401⁃10416. doi: 10.2147/IJN.S283515. |
[39] | Zhao L, Zhang X, Wang X, et al. Recent advances in selective photothermal therapy of tumor[J]. J Nanobiotechnology, 2021,19(1):335. doi: 10.1186/s12951⁃021⁃01080⁃3. |
[40] | S M, E S, R DV, et al. Phototherapy and sonotherapy of melanoma cancer cells using nanoparticles of selenium⁃polyethylene glycol⁃curcumin as a dual⁃mode sensitizer[J]. J Biomed Phys Eng, 2020,10(5):597⁃606. doi: 10.31661/jbpe.v0i0.1912⁃1039. |
[41] | Soratijahromi E, Mohammadi S, Dehdari Vais R, et al. Photothermal/sonodynamic therapy of melanoma tumor by a gold/manganese dioxide nanocomposite: in vitro and in vivo studies[J]. Photodiagnosis Photodyn Ther, 2020,31:101846. doi: 10. 1016/j.pdpdt.2020.101846. |
[42] | Wang S, Ma Z, Shi Z, et al. Chidamide stacked in magnetic polypyrrole nano⁃composites counter thermotolerance and metastasis for visualized cancer photothermal therapy[J]. Drug Deliv, 2022,29(1):1312⁃1325. doi: 10.1080/10717544.2022. 2068697. |
[43] | Heshmati Aghda N, Torres Hurtado S, Abdulsahib SM, et al. Dual photothermal/chemotherapy of melanoma cells with albumin nanoparticles carrying indocyanine green and doxorubicin leads to immunogenic cell death[J]. Macromol Biosci, 2022,22(2):e2100353. doi: 10.1002/mabi.202100353. |
[44] | Baskar R, Lee KA, Yeo R, et al. Cancer and radiation therapy: current advances and future directions[J]. Int J Med Sci, 2012,9(3):193⁃199. doi: 10.7150/ijms.3635. |
[45] | Chen MH, Lee CH, Liang HK, et al. Integrating the microneedles with carboplatin to facilitate the therapeutic effect of radiotherapy for skin cancers[J]. Biomater Adv, 2022,141:213113. doi: 10.1016/j.bioadv.2022.213113. |
[46] | Chan L, Gao P, Zhou W, et al. Sequentially triggered delivery system of black phosphorus quantum dots with surface charge⁃switching ability for precise tumor radiosensitization[J]. ACS Nano, 2018,12(12):12401⁃12415. doi: 10.1021/acsnano.8b06483. |
[1] | 白璐 楚妍 刘园园 朱才勇. 慢性手部湿疹的治疗进展[J]. 中华皮肤科杂志, 2025, 58(5): 477-480. |
[2] | 黄和金 李馨雅 席文文 肖霞 蒋斌 杨锋. 微创旋切术治疗腋臭患者3 000例术后并发症回顾分析[J]. 中华皮肤科杂志, 2025, 0(5): 20230291-e0230291. |
[3] | 中国儿童鲜红斑痣诊断和治疗专家共识制订专家组 中国医师协会皮肤科医师分会儿童学组. [开放获取] 儿童鲜红斑痣诊疗专家共识(2025版)[J]. 中华皮肤科杂志, 2025, 58(5): 396-404. |
[4] | 中国医师协会皮肤科医师分会 中华医学会皮肤病学分会治疗学组 中国医疗保健国际交流促进会皮肤医学分会 国家皮肤与免疫疾病临床医学研究中心 中国罕见病联盟皮肤罕见病专业委员会. 大疱性类天疱疮诊疗专家共识(2025版)[J]. 中华皮肤科杂志, 2025, 58(5): 405-415. |
[5] | 中国中西医结合学会皮肤性病专业委员会皮肤肿瘤学组 中国抗癌协会黑色素瘤专业委员会 中国抗癌协会皮肤肿瘤整合康复专业委员会. [开放获取] 色素痣诊疗专家共识(2025版)[J]. 中华皮肤科杂志, 2025, 58(5): 387-395. |
[6] | 中华医学会皮肤性病学分会 中国医师协会皮肤科医师分会. [开放获取] 特应性皮炎达标门诊建设标准专家共识(2025基层版)[J]. 中华皮肤科杂志, 2025, 0(4): 20240296-e20240296. |
[7] | 李紫钰 鲁严. 关注新型冠状病毒感染后重症皮肤病[J]. 中华皮肤科杂志, 2025, 58(4): 378-383. |
[8] | 许秋云 纪超. 坏疽性脓皮病系统合并症的研究进展[J]. 中华皮肤科杂志, 2025, 58(4): 369-373. |
[9] | 吕铭悦 满孝勇. 细胞治疗在系统性红斑狼疮中的应用[J]. 中华皮肤科杂志, 2025, 58(4): 374-377. |
[10] | 包诗杰 韩梅 周小勇. 基于文献回顾的依那西普治疗中毒性表皮坏死松解症疗效影响因素分析[J]. 中华皮肤科杂志, 2025, 58(4): 352-355. |
[11] | 万勇军 杨海晶 严翘 陈梅 王逢源 粟倩雅 董正邦 王飞. 免疫检查点抑制剂相关Stevens-Johnson综合征/中毒性表皮坏死松解症9例临床及预后分析[J]. 中华皮肤科杂志, 2025, 58(4): 347-351. |
[12] | 中国医师协会皮肤科医师分会儿童学组 中华医学会皮肤性病学分会银屑病学组. 【开放获取】 儿童脓疱型银屑病诊疗中国专家共识(2025版)[J]. 中华皮肤科杂志, 2025, 58(4): 297-306. |
[13] | 木葵 郭慧 文海泉 龙海 刘昱 罗帅寒天 黄馨 周星雨 肖嵘 李亚萍. 基于标准治疗联合泰它西普治疗25例系统性红斑狼疮的疗效和安全性分析[J]. 中华皮肤科杂志, 2025, 58(4): 322-327. |
[14] | 中华医学会皮肤性病学分会 中国医师协会皮肤科医师分会 中国医疗保健国际交流促进会皮肤医学分会 中国罕见病联盟皮肤罕见病专业委员会 国家皮肤与免疫疾病临床医学研究中心. 【开放获取】 副肿瘤性天疱疮诊疗中国专家共识(2025版)[J]. 中华皮肤科杂志, 2025, 58(4): 289-296. |
[15] | 李远程 韩仁强 缪伟刚 罗鹏飞 . 2009—2019年江苏省皮肤黑色素瘤发病趋势及年龄变化分析[J]. 中华皮肤科杂志, 2025, 58(3): 228-233. |
|