中华皮肤科杂志 ›› 2024, e20230109.doi: 10.35541/cjd.20230109
严可心 张韡 宋昊 徐秀莲
收稿日期:
2023-02-28
修回日期:
2023-12-09
发布日期:
2024-03-11
通讯作者:
徐秀莲
E-mail:xxlqjl@sina.com
基金资助:
Yan Kexin, Xu Xiulian
Received:
2023-02-28
Revised:
2023-12-09
Published:
2024-03-11
Contact:
Xu Xiulian
E-mail:xxlqjl@sina.com
Supported by:
摘要: 【摘要】 恶性黑色素瘤在皮肤癌中最具侵袭性,其诊断和治疗仍是一个艰巨的挑战。目前,晚期黑色素瘤的治疗方法有免疫治疗、化学疗法、分子靶向治疗、放射治疗、光动力疗法、光热疗法、基因治疗等,但是它们的治疗效果有限。新兴的纳米材料在癌症的诊断和治疗中,能够提高药物的生物利用度,并且精准靶向癌细胞。本文综述用于恶性黑色素瘤的诊断和不同治疗方法中的一些纳米颗粒的最新研究进展。
严可心 张韡 宋昊 徐秀莲. 纳米医学在恶性黑色素瘤中的诊断和治疗新策略[J]. 中华皮肤科杂志, 2024,e20230109. doi:10.35541/cjd.20230109
Yan Kexin, Xu Xiulian. Nanomedicine: a new strategy for the diagnosis and treatment of melanoma[J]. Chinese Journal of Dermatology,2024,e20230109. doi:10.35541/cjd.20230109
[1] | Yang K, Oak A, Slominski RM, et al. Current molecular markers of melanoma and treatment targets[J]. Int J Mol Sci, 2020,21(10):3535. doi: 10.3390/ijms21103535. |
[2] | Al⁃Zoubi MS, Al⁃Zoubi RM. Nanomedicine tactics in cancer treatment: challenge and hope[J]. Crit Rev Oncol Hematol, 2022,174:103677. doi: 10.1016/j.critrevonc.2022.103677. |
[3] | Peng S, Xiao F, Chen M, et al. Tumor⁃microenvironment⁃responsive nanomedicine for enhanced cancer immunotherapy[J]. Adv Sci (Weinh), 2022,9(1):e2103836. doi: 10.1002/advs. 202103836. |
[4] | Farjadian F, Ghasemi A, Gohari O, et al. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities[J]. Nanomedicine (Lond), 2019,14(1):93⁃126. doi: 10.2217/nnm⁃2018⁃0120. |
[5] | Wang P, Yang W, Shen S, et al. Differential diagnosis and precision therapy of two typical malignant cutaneous tumors leveraging their tumor microenvironment: a photomedicine strategy[J]. ACS Nano, 2019,13(10):11168⁃11180. doi: 10.1021/ acsnano.9b04070. |
[6] | Portilho FL, Helal⁃Neto E, Cabezas SS, et al. Magnetic core mesoporous silica nanoparticles doped with dacarbazine and labelled with 99mTc for early and differential detection of metastatic melanoma by single photon emission computed tomography[J]. Artif Cells Nanomed Biotechnol, 2018,46(sup1):1080⁃1087. doi: 10.1080/21691401.2018.1443941. |
[7] | Zou Y, Wei Y, Sun Y, et al. Cyclic RGD⁃functionalized and disulfide⁃crosslinked iodine⁃rich polymersomes as a robust and smart theranostic agent for targeted CT imaging and chemotherapy of tumor[J]. Theranostics, 2019,9(26):8061⁃8072. doi: 10.7150/thno.37184. |
[8] | Qiu X, Wu X, Fang X, et al. Raman spectroscopy combined with deep learning for rapid detection of melanoma at the single cell level[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2023,286:122029. doi: 10.1016/j.saa.2022.122029. |
[9] | Zhang Y, Takahashi Y, Hong SP, et al. High⁃resolution label⁃free 3D mapping of extracellular pH of single living cells[J]. Nat Commun, 2019,10(1):5610. doi: 10.1038/s41467⁃019⁃13535⁃1. |
[10] | Ou YC, Wen X, Johnson CA, et al. Multimodal multiplexed immunoimaging with nanostars to detect multiple immuno⁃markers and monitor response to immunotherapies[J]. ACS Nano, 2020,14(1):651⁃663. doi: 10.1021/acsnano.9b07326. |
[11] | Jenkins RW, Fisher DE. Treatment of advanced melanoma in 2020 and beyond[J]. J Invest Dermatol, 2021,141(1):23⁃31. doi: 10.1016/j.jid.2020.03.943. |
[12] | Carlino MS, Larkin J, Long GV. Immune checkpoint inhibitors in melanoma[J]. Lancet, 2021,398(10304):1002⁃1014. doi: 10. 1016/S0140⁃6736(21)01206⁃X. |
[13] | Yang X, Fan J, Wu Y, et al. Synthetic multiepitope neoantigen DNA vaccine for personalized cancer immunotherapy[J]. Nanomedicine, 2021,37:102443. doi: 10.1016/j.nano.2021.102443. |
[14] | Hu M, Zhang J, Kong L, et al. Immunogenic hybrid nanovesicles of liposomes and tumor⁃derived nanovesicles for cancer immunochemotherapy[J]. ACS Nano, 2021,15(2):3123⁃3138. doi: 10.1021/acsnano.0c09681. |
[15] | Salotto KE, Olson WC Jr, Pollack KE, et al. A nano⁃enhanced vaccine for metastatic melanoma immunotherapy[J]. Cancer Drug Resist, 2022,5(3):829⁃845. doi: 10.20517/cdr.2021.132. |
[16] | Sun Y, Lu D, Yin Y, et al. PTENα functions as an immune suppressor and promotes immune resistance in PTEN⁃mutant cancer[J]. Nat Commun, 2021,12(1):5147. doi: 10.1038/s41467⁃021⁃25417⁃6. |
[17] | Lin YX, Wang Y, Ding J, et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models[J]. Sci Transl Med, 2021,13(599):eaba9772. doi: 10.1126/scitranslmed.aba9772. |
[18] | Christofides A, Strauss L, Yeo A, et al. The complex role of tumor⁃infiltrating macrophages[J]. Nat Immunol, 2022,23(8):1148⁃1156. doi: 10.1038/s41590⁃022⁃01267⁃2. |
[19] | Rao L, Zhao SK, Wen C, et al. Activating macrophage⁃mediated cancer immunotherapy by genetically edited nanoparticles[J]. Adv Mater, 2020,32(47):e2004853. doi: 10.1002/adma.202004853. |
[20] | Guo W, Wang H, Li C. Signal pathways of melanoma and targeted therapy[J]. Signal Transduct Target Ther, 2021,6(1):424. doi: 10.1038/s41392⁃021⁃00827⁃6. |
[21] | Epshtein Y, Blau R, Pisarevsky E, et al. Polyglutamate⁃based nanoconjugates for image⁃guided surgery and post⁃operative melanoma metastases prevention[J]. Theranostics, 2022,12(14):6339⁃6362. doi: 10.7150/thno.72941. |
[22] | Zhang MJ, Liang MY, Yang SC, et al. Bioengineering of BRAF and COX2 inhibitor nanogels to boost the immunotherapy of melanoma via pyroptosis[J]. Chem Commun (Camb), 2023,59(7):932⁃935. doi: 10.1039/d2cc05498a. |
[23] | Pisarevsky E, Blau R, Epshtein Y, et al. Rational design of polyglutamic acid delivering an optimized combination of drugs targeting mutated BRAF and MEK in melanoma[J]. Adv Ther (Weinh), 2020,3(8):2000028 [pii]. doi: 10.1002/adtp.202000028. |
[24] | Shinkuma S. Advances in gene therapy and their application to skin diseases: a review[J]. J Dermatol Sci, 2021,103(1):2⁃9. doi: 10.1016/j.jdermsci.2021.05.004. |
[25] | Liu J, Yang L, Yuan X, et al. Targeted nanotherapeutics using LACTB gene therapy against melanoma[J]. Int J Nanomedicine, 2021,16:7697⁃7709. doi: 10.2147/IJN.S331519. |
[26] | Ma Y, Lin H, Wang P, et al. A miRNA⁃based gene therapy nanodrug synergistically enhances pro⁃inflammatory antitumor immunity against melanoma[J]. Acta Biomater, 2023,155:538⁃553. doi: 10.1016/j.actbio.2022.11.016. |
[27] | Zhang X, Cai A, Gao Y, et al. Treatment of melanoma by nano⁃conjugate⁃delivered wee1 siRNA[J]. Mol Pharm, 2021,18(9):3387⁃3400. doi: 10.1021/acs.molpharmaceut.1c00316. |
[28] | Zhang Z, Xu D, Wang J, et al. Rolling circle amplification⁃based dna nano⁃assembly for targeted drug delivery and gene therapy[J]. Biomacromolecules, 2023,24(1):439⁃448. doi: 10.1021/acs. biomac.2c01271. |
[29] | Zahraie N, Perota G, Dehdari Vais R, et al. Simultaneous chemotherapy/sonodynamic therapy of the melanoma cancer cells using a gold⁃paclitaxel nanostructure[J]. Photodiagnosis Photodyn Ther, 2022,39:102991. doi: 10.1016/j.pdpdt.2022. 102991. |
[30] | Bhattarai RS, Bariwal J, Kumar V, et al. pH⁃sensitive nanomedicine of novel tubulin polymerization inhibitor for lung metastatic melanoma[J]. J Control Release, 2022,350:569⁃583. doi: 10.1016/j.jconrel.2022.08.023. |
[31] | Li A, Zhao J, Fu J, et al. Recent advances of biomimetic nano⁃systems in the diagnosis and treatment of tumor[J]. Asian J Pharm Sci, 2021,16(2):161⁃174. doi: 10.1016/j.ajps.2019.08. 001. |
[32] | Molinaro R, Martinez JO, Zinger A, et al. Leukocyte⁃mimicking nanovesicles for effective doxorubicin delivery to treat breast cancer and melanoma[J]. Biomater Sci, 2020,8(1):333⁃341. doi: 10.1039/c9bm01766f. |
[33] | Wu M, Mei T, Lin C, et al. Melanoma cell membrane biomimetic versatile cus nanoprobes for homologous targeting photoacoustic imaging and photothermal chemotherapy[J]. ACS Appl Mater Interfaces, 2020,12(14):16031⁃16039. doi: 10.1021/acsami. 9b23177. |
[34] | Naidoo C, Kruger CA, Abrahamse H. Photodynamic therapy for metastatic melanoma treatment: a review[J]. Technol Cancer Res Treat, 2018,17:15330338 18791795. doi: 10.1177/1533033 818791795. |
[35] | Huang X, Mu N, Ding Y, et al. Targeted delivery and enhanced uptake of chemo⁃photodynamic nanomedicine for melanoma treatment[J]. Acta Biomater, 2022,147:356⁃365. doi: 10.1016/j.actbio.2022.05.015. |
[36] | Bian Q, Huang L, Xu Y, et al. A facile low⁃dose photosensitizer⁃incorporated dissolving microneedles⁃based composite system for eliciting antitumor immunity and the abscopal effect[J]. ACS Nano, 2021,15(12):19468⁃19479. doi: 10.1021/acsnano. 1c06225. |
[37] | Wang Y, Zhao Z, Liu C, et al. B16 membrane⁃coated vesicles for combined photodynamic therapy and immunotherapy shift immune microenvironment of melanoma[J]. Int J Nanomedicine, 2022,17:855⁃868. doi: 10.2147/IJN.S338488. |
[38] | Hou X, Tao Y, Li X, et al. CD44⁃targeting oxygen self⁃sufficient nanoparticles for enhanced photodynamic therapy against malignant melanoma[J]. Int J Nanomedicine, 2020,15:10401⁃10416. doi: 10.2147/IJN.S283515. |
[39] | Zhao L, Zhang X, Wang X, et al. Recent advances in selective photothermal therapy of tumor[J]. J Nanobiotechnology, 2021,19(1):335. doi: 10.1186/s12951⁃021⁃01080⁃3. |
[40] | S M, E S, R DV, et al. Phototherapy and sonotherapy of melanoma cancer cells using nanoparticles of selenium⁃polyethylene glycol⁃curcumin as a dual⁃mode sensitizer[J]. J Biomed Phys Eng, 2020,10(5):597⁃606. doi: 10.31661/jbpe.v0i0.1912⁃1039. |
[41] | Soratijahromi E, Mohammadi S, Dehdari Vais R, et al. Photothermal/sonodynamic therapy of melanoma tumor by a gold/manganese dioxide nanocomposite: in vitro and in vivo studies[J]. Photodiagnosis Photodyn Ther, 2020,31:101846. doi: 10. 1016/j.pdpdt.2020.101846. |
[42] | Wang S, Ma Z, Shi Z, et al. Chidamide stacked in magnetic polypyrrole nano⁃composites counter thermotolerance and metastasis for visualized cancer photothermal therapy[J]. Drug Deliv, 2022,29(1):1312⁃1325. doi: 10.1080/10717544.2022. 2068697. |
[43] | Heshmati Aghda N, Torres Hurtado S, Abdulsahib SM, et al. Dual photothermal/chemotherapy of melanoma cells with albumin nanoparticles carrying indocyanine green and doxorubicin leads to immunogenic cell death[J]. Macromol Biosci, 2022,22(2):e2100353. doi: 10.1002/mabi.202100353. |
[44] | Baskar R, Lee KA, Yeo R, et al. Cancer and radiation therapy: current advances and future directions[J]. Int J Med Sci, 2012,9(3):193⁃199. doi: 10.7150/ijms.3635. |
[45] | Chen MH, Lee CH, Liang HK, et al. Integrating the microneedles with carboplatin to facilitate the therapeutic effect of radiotherapy for skin cancers[J]. Biomater Adv, 2022,141:213113. doi: 10.1016/j.bioadv.2022.213113. |
[46] | Chan L, Gao P, Zhou W, et al. Sequentially triggered delivery system of black phosphorus quantum dots with surface charge⁃switching ability for precise tumor radiosensitization[J]. ACS Nano, 2018,12(12):12401⁃12415. doi: 10.1021/acsnano.8b06483. |
[1] | 中国中西医结合学会皮肤性病专业委员会 中华医学会皮肤性病学分会 中国医师协会皮肤科医师分会. 常见非黑素细胞性皮肤肿瘤的反射式共聚焦显微镜特征专家共识(2025版)[J]. 中华皮肤科杂志, 2025, 58(1): 20-33. |
[2] | 中国康复医学会皮肤病康复专业委员会 中国中西医结合学会皮肤性病专业委员会老年皮肤病学组. [开放获取] 老年皮肤瘙痒症诊疗与康复专家共识(2025版)[J]. 中华皮肤科杂志, 2025, 58(1): 1-8. |
[3] | 中国康复医学会皮肤病康复专业委员会 中国康复医学会光动力治疗与康复专业委员会 中华医学会皮肤性病学分会光动力治疗协作组. [开放获取] 氨基酮戊酸光动力疗法治疗非黑色素瘤皮肤癌临床应用专家共识(2025版)[J]. 中华皮肤科杂志, 2025, 58(1): 9-19. |
[4] | 廖彩荷 王佩茹 吴明顺 孙晓飞 张国龙 王秀丽. 联合氨基酮戊酸光动力疗法治疗老年颜面部基底细胞癌的疗效及安全性回顾分析[J]. 中华皮肤科杂志, 2025, 58(1): 34-39. |
[5] | 吴曹英 杨永婷 王春 申耀元 贾卉卉 李婷婷 赵娟 康晓静. 老年黑色素瘤临床病理特征及预后分析[J]. 中华皮肤科杂志, 2025, 58(1): 40-46. |
[6] | 金兰 邱云 王唯嘉 康晓静 丁媛. [开放获取] 生物制剂治疗老年中重度银屑病124例的临床疗效和安全性回顾分析[J]. 中华皮肤科杂志, 2025, 58(1): 47-52. |
[7] | 王博 郑捷. 老年银屑病和特应性皮炎患者生物制剂及小分子药物治疗中应注意的问题[J]. 中华皮肤科杂志, 2025, 58(1): 72-75. |
[8] | 杨子靖 陈利红 阮叶平 文莞廷 张嘉艺 王海伦 潘萌 赵肖庆. 度普利尤单抗治疗老年性特应性皮炎的疗效及安全性研究[J]. 中华皮肤科杂志, 2025, 58(1): 65-69. |
[9] | 王迪 张瑞珺 康玉英. 脂溢性皮炎的发病机制及治疗研究进展[J]. 中华皮肤科杂志, 2025, 58(1): 89-92. |
[10] | 郝峰 刘国艳. [开放获取] 光学相干断层扫描技术在皮肤科的应用进展[J]. 中华皮肤科杂志, 2024, 57(9): 853-857. |
[11] | 王瑞霞 曲岩磊 艾文锦 闫琳 曲才杰 史同新. 非大疱性嗜中性红斑狼疮1例[J]. 中华皮肤科杂志, 2024, 57(9): 832-834. |
[12] | 邹先彪 陈锦纯 曾悦 郝轶. [开放获取] 超声检查在皮肤科的应用前景[J]. 中华皮肤科杂志, 2024, 57(9): 785-790. |
[13] | 向茜 张凌燕 钟琳 高奕 邱逦. 鲜红斑痣多模态超声表现及在光动力疗效评估中的应用研究[J]. 中华皮肤科杂志, 2024, 57(9): 801-806. |
[14] | 曾悦 邵惠红 林诗雯 温柔 邹先彪. 可穿戴远程会诊设备在常见皮肤病诊断中的应用[J]. 中华皮肤科杂志, 2024, 57(9): 797-800. |
[15] | 何兰 马玲 姜倩 陈柳青 陈红英. 非生殖器部位硬化性苔藓57例皮肤镜与反射式共聚焦显微镜影像特征分析[J]. 中华皮肤科杂志, 2024, 57(9): 791-796. |
|