中华皮肤科杂志 ›› 2024, e20230109.doi: 10.35541/cjd.20230109
严可心 张韡 宋昊 徐秀莲
收稿日期:2023-02-28
修回日期:2023-12-09
发布日期:2024-03-11
通讯作者:
徐秀莲
E-mail:xxlqjl@sina.com
基金资助:Yan Kexin, Xu Xiulian
Received:2023-02-28
Revised:2023-12-09
Published:2024-03-11
Contact:
Xu Xiulian
E-mail:xxlqjl@sina.com
Supported by:摘要: 【摘要】 恶性黑色素瘤在皮肤癌中最具侵袭性,其诊断和治疗仍是一个艰巨的挑战。目前,晚期黑色素瘤的治疗方法有免疫治疗、化学疗法、分子靶向治疗、放射治疗、光动力疗法、光热疗法、基因治疗等,但是它们的治疗效果有限。新兴的纳米材料在癌症的诊断和治疗中,能够提高药物的生物利用度,并且精准靶向癌细胞。本文综述用于恶性黑色素瘤的诊断和不同治疗方法中的一些纳米颗粒的最新研究进展。
严可心 张韡 宋昊 徐秀莲. 纳米医学在恶性黑色素瘤中的诊断和治疗新策略[J]. 中华皮肤科杂志, 2024,e20230109. doi:10.35541/cjd.20230109
Yan Kexin, Xu Xiulian. Nanomedicine: a new strategy for the diagnosis and treatment of melanoma[J]. Chinese Journal of Dermatology,2024,e20230109. doi:10.35541/cjd.20230109
| [1] | Yang K, Oak A, Slominski RM, et al. Current molecular markers of melanoma and treatment targets[J]. Int J Mol Sci, 2020,21(10):3535. doi: 10.3390/ijms21103535. |
| [2] | Al⁃Zoubi MS, Al⁃Zoubi RM. Nanomedicine tactics in cancer treatment: challenge and hope[J]. Crit Rev Oncol Hematol, 2022,174:103677. doi: 10.1016/j.critrevonc.2022.103677. |
| [3] | Peng S, Xiao F, Chen M, et al. Tumor⁃microenvironment⁃responsive nanomedicine for enhanced cancer immunotherapy[J]. Adv Sci (Weinh), 2022,9(1):e2103836. doi: 10.1002/advs. 202103836. |
| [4] | Farjadian F, Ghasemi A, Gohari O, et al. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities[J]. Nanomedicine (Lond), 2019,14(1):93⁃126. doi: 10.2217/nnm⁃2018⁃0120. |
| [5] | Wang P, Yang W, Shen S, et al. Differential diagnosis and precision therapy of two typical malignant cutaneous tumors leveraging their tumor microenvironment: a photomedicine strategy[J]. ACS Nano, 2019,13(10):11168⁃11180. doi: 10.1021/ acsnano.9b04070. |
| [6] | Portilho FL, Helal⁃Neto E, Cabezas SS, et al. Magnetic core mesoporous silica nanoparticles doped with dacarbazine and labelled with 99mTc for early and differential detection of metastatic melanoma by single photon emission computed tomography[J]. Artif Cells Nanomed Biotechnol, 2018,46(sup1):1080⁃1087. doi: 10.1080/21691401.2018.1443941. |
| [7] | Zou Y, Wei Y, Sun Y, et al. Cyclic RGD⁃functionalized and disulfide⁃crosslinked iodine⁃rich polymersomes as a robust and smart theranostic agent for targeted CT imaging and chemotherapy of tumor[J]. Theranostics, 2019,9(26):8061⁃8072. doi: 10.7150/thno.37184. |
| [8] | Qiu X, Wu X, Fang X, et al. Raman spectroscopy combined with deep learning for rapid detection of melanoma at the single cell level[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2023,286:122029. doi: 10.1016/j.saa.2022.122029. |
| [9] | Zhang Y, Takahashi Y, Hong SP, et al. High⁃resolution label⁃free 3D mapping of extracellular pH of single living cells[J]. Nat Commun, 2019,10(1):5610. doi: 10.1038/s41467⁃019⁃13535⁃1. |
| [10] | Ou YC, Wen X, Johnson CA, et al. Multimodal multiplexed immunoimaging with nanostars to detect multiple immuno⁃markers and monitor response to immunotherapies[J]. ACS Nano, 2020,14(1):651⁃663. doi: 10.1021/acsnano.9b07326. |
| [11] | Jenkins RW, Fisher DE. Treatment of advanced melanoma in 2020 and beyond[J]. J Invest Dermatol, 2021,141(1):23⁃31. doi: 10.1016/j.jid.2020.03.943. |
| [12] | Carlino MS, Larkin J, Long GV. Immune checkpoint inhibitors in melanoma[J]. Lancet, 2021,398(10304):1002⁃1014. doi: 10. 1016/S0140⁃6736(21)01206⁃X. |
| [13] | Yang X, Fan J, Wu Y, et al. Synthetic multiepitope neoantigen DNA vaccine for personalized cancer immunotherapy[J]. Nanomedicine, 2021,37:102443. doi: 10.1016/j.nano.2021.102443. |
| [14] | Hu M, Zhang J, Kong L, et al. Immunogenic hybrid nanovesicles of liposomes and tumor⁃derived nanovesicles for cancer immunochemotherapy[J]. ACS Nano, 2021,15(2):3123⁃3138. doi: 10.1021/acsnano.0c09681. |
| [15] | Salotto KE, Olson WC Jr, Pollack KE, et al. A nano⁃enhanced vaccine for metastatic melanoma immunotherapy[J]. Cancer Drug Resist, 2022,5(3):829⁃845. doi: 10.20517/cdr.2021.132. |
| [16] | Sun Y, Lu D, Yin Y, et al. PTENα functions as an immune suppressor and promotes immune resistance in PTEN⁃mutant cancer[J]. Nat Commun, 2021,12(1):5147. doi: 10.1038/s41467⁃021⁃25417⁃6. |
| [17] | Lin YX, Wang Y, Ding J, et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models[J]. Sci Transl Med, 2021,13(599):eaba9772. doi: 10.1126/scitranslmed.aba9772. |
| [18] | Christofides A, Strauss L, Yeo A, et al. The complex role of tumor⁃infiltrating macrophages[J]. Nat Immunol, 2022,23(8):1148⁃1156. doi: 10.1038/s41590⁃022⁃01267⁃2. |
| [19] | Rao L, Zhao SK, Wen C, et al. Activating macrophage⁃mediated cancer immunotherapy by genetically edited nanoparticles[J]. Adv Mater, 2020,32(47):e2004853. doi: 10.1002/adma.202004853. |
| [20] | Guo W, Wang H, Li C. Signal pathways of melanoma and targeted therapy[J]. Signal Transduct Target Ther, 2021,6(1):424. doi: 10.1038/s41392⁃021⁃00827⁃6. |
| [21] | Epshtein Y, Blau R, Pisarevsky E, et al. Polyglutamate⁃based nanoconjugates for image⁃guided surgery and post⁃operative melanoma metastases prevention[J]. Theranostics, 2022,12(14):6339⁃6362. doi: 10.7150/thno.72941. |
| [22] | Zhang MJ, Liang MY, Yang SC, et al. Bioengineering of BRAF and COX2 inhibitor nanogels to boost the immunotherapy of melanoma via pyroptosis[J]. Chem Commun (Camb), 2023,59(7):932⁃935. doi: 10.1039/d2cc05498a. |
| [23] | Pisarevsky E, Blau R, Epshtein Y, et al. Rational design of polyglutamic acid delivering an optimized combination of drugs targeting mutated BRAF and MEK in melanoma[J]. Adv Ther (Weinh), 2020,3(8):2000028 [pii]. doi: 10.1002/adtp.202000028. |
| [24] | Shinkuma S. Advances in gene therapy and their application to skin diseases: a review[J]. J Dermatol Sci, 2021,103(1):2⁃9. doi: 10.1016/j.jdermsci.2021.05.004. |
| [25] | Liu J, Yang L, Yuan X, et al. Targeted nanotherapeutics using LACTB gene therapy against melanoma[J]. Int J Nanomedicine, 2021,16:7697⁃7709. doi: 10.2147/IJN.S331519. |
| [26] | Ma Y, Lin H, Wang P, et al. A miRNA⁃based gene therapy nanodrug synergistically enhances pro⁃inflammatory antitumor immunity against melanoma[J]. Acta Biomater, 2023,155:538⁃553. doi: 10.1016/j.actbio.2022.11.016. |
| [27] | Zhang X, Cai A, Gao Y, et al. Treatment of melanoma by nano⁃conjugate⁃delivered wee1 siRNA[J]. Mol Pharm, 2021,18(9):3387⁃3400. doi: 10.1021/acs.molpharmaceut.1c00316. |
| [28] | Zhang Z, Xu D, Wang J, et al. Rolling circle amplification⁃based dna nano⁃assembly for targeted drug delivery and gene therapy[J]. Biomacromolecules, 2023,24(1):439⁃448. doi: 10.1021/acs. biomac.2c01271. |
| [29] | Zahraie N, Perota G, Dehdari Vais R, et al. Simultaneous chemotherapy/sonodynamic therapy of the melanoma cancer cells using a gold⁃paclitaxel nanostructure[J]. Photodiagnosis Photodyn Ther, 2022,39:102991. doi: 10.1016/j.pdpdt.2022. 102991. |
| [30] | Bhattarai RS, Bariwal J, Kumar V, et al. pH⁃sensitive nanomedicine of novel tubulin polymerization inhibitor for lung metastatic melanoma[J]. J Control Release, 2022,350:569⁃583. doi: 10.1016/j.jconrel.2022.08.023. |
| [31] | Li A, Zhao J, Fu J, et al. Recent advances of biomimetic nano⁃systems in the diagnosis and treatment of tumor[J]. Asian J Pharm Sci, 2021,16(2):161⁃174. doi: 10.1016/j.ajps.2019.08. 001. |
| [32] | Molinaro R, Martinez JO, Zinger A, et al. Leukocyte⁃mimicking nanovesicles for effective doxorubicin delivery to treat breast cancer and melanoma[J]. Biomater Sci, 2020,8(1):333⁃341. doi: 10.1039/c9bm01766f. |
| [33] | Wu M, Mei T, Lin C, et al. Melanoma cell membrane biomimetic versatile cus nanoprobes for homologous targeting photoacoustic imaging and photothermal chemotherapy[J]. ACS Appl Mater Interfaces, 2020,12(14):16031⁃16039. doi: 10.1021/acsami. 9b23177. |
| [34] | Naidoo C, Kruger CA, Abrahamse H. Photodynamic therapy for metastatic melanoma treatment: a review[J]. Technol Cancer Res Treat, 2018,17:15330338 18791795. doi: 10.1177/1533033 818791795. |
| [35] | Huang X, Mu N, Ding Y, et al. Targeted delivery and enhanced uptake of chemo⁃photodynamic nanomedicine for melanoma treatment[J]. Acta Biomater, 2022,147:356⁃365. doi: 10.1016/j.actbio.2022.05.015. |
| [36] | Bian Q, Huang L, Xu Y, et al. A facile low⁃dose photosensitizer⁃incorporated dissolving microneedles⁃based composite system for eliciting antitumor immunity and the abscopal effect[J]. ACS Nano, 2021,15(12):19468⁃19479. doi: 10.1021/acsnano. 1c06225. |
| [37] | Wang Y, Zhao Z, Liu C, et al. B16 membrane⁃coated vesicles for combined photodynamic therapy and immunotherapy shift immune microenvironment of melanoma[J]. Int J Nanomedicine, 2022,17:855⁃868. doi: 10.2147/IJN.S338488. |
| [38] | Hou X, Tao Y, Li X, et al. CD44⁃targeting oxygen self⁃sufficient nanoparticles for enhanced photodynamic therapy against malignant melanoma[J]. Int J Nanomedicine, 2020,15:10401⁃10416. doi: 10.2147/IJN.S283515. |
| [39] | Zhao L, Zhang X, Wang X, et al. Recent advances in selective photothermal therapy of tumor[J]. J Nanobiotechnology, 2021,19(1):335. doi: 10.1186/s12951⁃021⁃01080⁃3. |
| [40] | S M, E S, R DV, et al. Phototherapy and sonotherapy of melanoma cancer cells using nanoparticles of selenium⁃polyethylene glycol⁃curcumin as a dual⁃mode sensitizer[J]. J Biomed Phys Eng, 2020,10(5):597⁃606. doi: 10.31661/jbpe.v0i0.1912⁃1039. |
| [41] | Soratijahromi E, Mohammadi S, Dehdari Vais R, et al. Photothermal/sonodynamic therapy of melanoma tumor by a gold/manganese dioxide nanocomposite: in vitro and in vivo studies[J]. Photodiagnosis Photodyn Ther, 2020,31:101846. doi: 10. 1016/j.pdpdt.2020.101846. |
| [42] | Wang S, Ma Z, Shi Z, et al. Chidamide stacked in magnetic polypyrrole nano⁃composites counter thermotolerance and metastasis for visualized cancer photothermal therapy[J]. Drug Deliv, 2022,29(1):1312⁃1325. doi: 10.1080/10717544.2022. 2068697. |
| [43] | Heshmati Aghda N, Torres Hurtado S, Abdulsahib SM, et al. Dual photothermal/chemotherapy of melanoma cells with albumin nanoparticles carrying indocyanine green and doxorubicin leads to immunogenic cell death[J]. Macromol Biosci, 2022,22(2):e2100353. doi: 10.1002/mabi.202100353. |
| [44] | Baskar R, Lee KA, Yeo R, et al. Cancer and radiation therapy: current advances and future directions[J]. Int J Med Sci, 2012,9(3):193⁃199. doi: 10.7150/ijms.3635. |
| [45] | Chen MH, Lee CH, Liang HK, et al. Integrating the microneedles with carboplatin to facilitate the therapeutic effect of radiotherapy for skin cancers[J]. Biomater Adv, 2022,141:213113. doi: 10.1016/j.bioadv.2022.213113. |
| [46] | Chan L, Gao P, Zhou W, et al. Sequentially triggered delivery system of black phosphorus quantum dots with surface charge⁃switching ability for precise tumor radiosensitization[J]. ACS Nano, 2018,12(12):12401⁃12415. doi: 10.1021/acsnano.8b06483. |
| [1] | 黄和金 李馨雅 席文文 肖霞 蒋斌 杨锋. 微创旋切术治疗腋臭患者3 000例术后并发症回顾分析[J]. 中华皮肤科杂志, 2026, 59(1): 62-64. |
| [2] | 陈雁雁 张翰林 刘莉萍 李遇梅. 昼夜节律与黑色素瘤相关性的研究进展[J]. 中华皮肤科杂志, 2026, 59(1): 82-85. |
| [3] | 《疥疮诊疗中国专家共识(版)》编写委员会专家组. 疥疮诊疗中国专家共识(2026版)[J]. 中华皮肤科杂志, 2026, 59(1): 1-8. |
| [4] | 王溯 吴晋彤 李文钰 章程 李承新 王睿. 低温等离子体治疗小鼠非开放性金黄色葡萄球菌感染性皮肤病的有效性和安全性评价[J]. 中华皮肤科杂志, 2026, 59(1): 44-50. |
| [5] | 项蕾红 徐中奕. 真皮获得性斑状色素沉着症的诊疗难点及对策[J]. 中华皮肤科杂志, 2026, 59(1): 74-76. |
| [6] | 中华医学会皮肤性病学分会 中国医师协会皮肤科医师分会 中国中西医结合学会皮肤性病专业委员会 中国非公立医疗机构协会皮肤专业委员会. [开放获取] 玫瑰痤疮患者教育指导专家共识(2026版)[J]. 中华皮肤科杂志, 2026, 0(1): 20240725-e20240725. |
| [7] | 刘厚广 申宜 魏琼玲 李峥 霍姗姗 谢广成 刘英文. 过表达或抑制细胞周期蛋白依赖性激酶2对A375细胞代谢组的影响[J]. 中华皮肤科杂志, 2026, 59(1): 51-58. |
| [8] | 姜倩 胡彬 陈瑶 陈柳青. 儿童面部获得性色素沉着斑131例临床及影像学特征回顾分析[J]. 中华皮肤科杂志, 2025, 58(9): 843-847. |
| [9] | 戴叶芹 宋秀祖. 毛囊及毛囊细胞移植在白癜风治疗中的应用进展[J]. 中华皮肤科杂志, 2025, 58(9): 882-885. |
| [10] | 徐中奕 邢小雪 董雅琦 张成锋 项蕾红. 上海市某三甲医院黄褐斑患者254例临床特征及疗效的回顾性分析[J]. 中华皮肤科杂志, 2025, 58(9): 808-815. |
| [11] | 姜子琪 钟菊丹 陈廷巧 陈瑾. 黄褐斑发病机制及治疗研究进展[J]. 中华皮肤科杂志, 2025, 58(9): 868-872. |
| [12] | 钟洁敏 李薇 张淑娟 杨艳 薛如君 李欣怡 柯娅楠 陈晓吟 陈荃. 纳米微针与超声波导入氨甲环酸治疗黄褐斑的疗效与安全性比较:一项随机对照研究[J]. 中华皮肤科杂志, 2025, 58(9): 829-833. |
| [13] | 朱婷婷, 李蔚然 潘召兵 刘昊 唐先发 朱才红 黄鹤群 段大威 张若晨 陈小建 汪洋 薛倩 张菊锐 杨丽婧 张学军, 黄贺, 张博, . 巴瑞替尼联合芦可替尼乳膏治疗6例进展期非节段型白癜风患者的疗效观察[J]. 中华皮肤科杂志, 2025, 58(9): 856-859. |
| [14] | 周妙妮 盛安琪 傅丽芳 金嵘 许文 尉晓冬 许爱娥. 茶多酚抗氧化凝胶联合窄谱中波紫外线治疗白癜风的疗效及安全性单中心随机对照试验[J]. 中华皮肤科杂志, 2025, 58(9): 834-838. |
| [15] | 湛锦杉 玄秀云 曹娟梅 谌芳琪 黄长征. 抗黑素瘤分化相关基因5抗体阳性皮肌炎治疗进展[J]. 中华皮肤科杂志, 2025, 58(8): 785-788. |
|