[1] |
Wu X, Yang Y, Xiang L, et al. The fate of melanocyte: mechanisms of cell death in vitiligo[J]. Pigment Cell Melanoma Res, 2021,34(2):256⁃267. doi: 10.1111/pcmr.12955.
|
[2] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron⁃dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5):1060⁃1072. doi: 10.1016/j.cell.2012.03.042.
|
[3] |
Liu L, Lian N, Shi L, et al. Ferroptosis: mechanism and connections with cutaneous diseases[J]. Front Cell Dev Biol, 2022,10:1079548. doi: 10.3389/fcell.2022.1079548.
|
[4] |
Xuan Y, Yang Y, Xiang L, et al. The role of oxidative stress in the pathogenesis of vitiligo: a culprit for melanocyte death[J]. Oxid Med Cell Longev, 2022,2022:8498472. doi: 10.1155/2022/8498472.
|
[5] |
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021,22(4):266⁃282. doi: 10.1038/s41580⁃020⁃00324⁃8.
|
[6] |
戴乐恒, 胡雯, 张坤杰, 等. 异鼠李素对H2O2诱导的HaCaT细胞线粒体结构及功能损伤的保护作用研究[J]. 中华皮肤科杂志, 2023,56(9):857⁃861. doi: 10.35541/cjd.20220821.
|
[7] |
Chang WL, Ko CH. The role of oxidative stress in vitiligo: an update on its pathogenesis and therapeutic implications[J]. Cells, 2023,12(6):936. doi: 10.3390/cells12060936.
|
[8] |
Praharsini IGAA, Wiraguna AAGP, Batan PNW. The positive correlation between serum malondialdehyde levels with vitiligo severity and activity[J]. Bali Dermatol Venereol J, 2019,2(1):12⁃16. doi: 10.15562/bdv.v2i1.17.
|
[9] |
Nowowiejska L, Marek⁃Józefowicz L, Szewczyk⁃Golec K, et al. Influence of oral supplementation of vitamins A and E on the effectiveness of vitiligo treatment[J]. Dermatol Ther, 2023(1): 3777109. doi: 10.1155/2023/3777109.
|
[10] |
Kajarabille N, Latunde⁃Dada GO. Programmed cell⁃death by ferroptosis: antioxidants as mitigators[J]. Int J Mol Sci, 2019,20(19):4968. doi: 10.3390/ijms20194968.
|
[11] |
Jian Z, Li K, Liu L, et al. Heme oxygenase⁃1 protects human melanocytes from H2O2⁃induced oxidative stress via the Nrf2⁃ARE pathway[J]. J Invest Dermatol, 2011,131(7):1420⁃1427. doi: 10.1038/jid.2011.56.
|
[12] |
Jian Z, Li K, Song P, et al. Impaired activation of the Nrf2⁃ARE signaling pathway undermines H2O2⁃induced oxidative stress response: a possible mechanism for melanocyte degeneration in vitiligo[J]. J Invest Dermatol, 2014,134(8):2221⁃2230. doi: 10.1038/jid.2014.152.
|
[13] |
Wu X, Jin S, Yang Y, et al. Altered expression of ferroptosis markers and iron metabolism reveals a potential role of ferroptosis in vitiligo[J]. Pigment Cell Melanoma Res, 2022,35(3):328⁃341. doi: 10.1111/pcmr.13032.
|
[14] |
Zhang J, Xiang F, Ding Y, et al. Identification and validation of RNA⁃binding protein SLC3A2 regulates melanocyte ferroptosis in vitiligo by integrated analysis of single⁃cell and bulk RNA⁃sequencing[J]. BMC Genomics, 2024,25(1):236. doi: 10.1186/s12864⁃024⁃10147⁃y.
|
[15] |
Ng CY, Chan YP, Chiu YC, et al. Targeting the elevated IFN⁃γ in vitiligo patients by human anti⁃ IFN⁃γ monoclonal antibody hampers direct cytotoxicity in melanocyte[J]. J Dermatol Sci, 2023,110(3):78⁃88. doi: 10.1016/j.jdermsci.2023.04.006.
|
[16] |
Yang M, Li X, Li H, et al. Baicalein inhibits RLS3⁃induced ferroptosis in melanocytes[J]. Biochem Biophys Res Commun, 2021,561:65⁃72. doi: 10.1016/j.bbrc.2021.05.010.
|
[17] |
Abdel Mawla MYM, Khalifa NA, Khattab FM, et al. Evaluation of serum interferon gamma in patients with vitiligo versus control group[J]. Egypt J Hosp Med, 2022,88(1):3839⁃3843. doi:10. 21608/ejhm.2022.252244.
|
[18] |
Chen Y, Fang ZM, Yi X, et al. The interaction between ferroptosis and inflammatory signaling pathways[J]. Cell Death Dis, 2023,14(3):205. doi: 10.1038/s41419⁃023⁃05716⁃0.
|
[19] |
Zhang Q, Cui T, Chang Y, et al. HO⁃1 regulates the function of Treg: association with the immune intolerance in vitiligo[J]. J Cell Mol Med, 2018,22(9):4335⁃4343. doi: 10.1111/jcmm.13723.
|
[20] |
Liu LY, He SJ, Luo J, et al. Network pharmacology, molecular docking and experimental study on the mechanism of curcumin's anti⁃ferroptosis in melanocytes[J]. Biochem Biophys Res Commun, 2024,736:150871. doi: 10.1016/j.bbrc.2024.150871.
|
[21] |
Liu X, Yang G, Luo M, et al. Serum vitamin E levels and chronic inflammatory skin diseases: a systematic review and meta⁃analysis[J]. PLoS One, 2021,16(12):e0261259. doi: 10.1371/journal.pone.0261259.
|
[22] |
Elgoweini M, Nour El Din N. Response of vitiligo to narrowband ultraviolet B and oral antioxidants[J]. J Clin Pharmacol, 2009,49(7):852⁃855. doi: 10.1177/0091270009335769.
|
[23] |
Colucci R, Dragoni F, Conti R, et al. Evaluation of an oral supplement containing Phyllanthus emblica fruit extracts, vitamin E, and carotenoids in vitiligo treatment[J]. Dermatol Ther, 2015,28(1):17⁃21. doi: 10.1111/dth.12172.
|
[24] |
Akakpo JY, Ramachandran A, Curry SC, et al. Comparing N⁃acetylcysteine and 4⁃methylpyrazole as antidotes for acetaminophen overdose[J]. Arch Toxicol, 2022,96(2):453⁃465. doi: 10.1007/s00204⁃021⁃03211⁃z.
|
[25] |
杨燕飞. 紫草、黄芩复方制剂治疗白癜风的临床有效性与安全性评价[J]. 中国现代药物应用, 2019,13(19):120⁃121. doi: 10.14164/j.cnki.cn11⁃5581/r.2019.19.073.
|
[26] |
Hu W, Wang H, Li K, et al. Identification of active compounds in Vernonia anthelmintica (L.) willd by targeted metabolome MRM and kaempferol promotes HaCaT cell proliferation and reduces oxidative stress[J]. Front Pharmacol, 2024,15:1343306. doi: 10.3389/fphar.2024.1343306.
|
[27] |
邹雪莲, 胡雯, 雷子贤, 等. 山奈酚减轻人角质形成细胞氧化应激损伤[J]. 基础医学与临床, 2021,41(8):1103⁃1108. doi: 10.3969/j.issn.1001⁃6325.2021.08.004.
|
[28] |
王红娟, 雷子贤, 胡雯, 等. 山柰酚对人表皮黑素细胞黑素合成及增殖凋亡的影响观察[J]. 山东医药, 2023,63(9):22⁃25. doi: 10.3969/j.issn.1002⁃266X.2023.09.006.
|
[29] |
Zhang S, Yi X, Su X, et al. Ginkgo biloba extract protects human melanocytes from H2O2⁃induced oxidative stress by activating Nrf2[J]. J Cell Mol Med, 2019,23(8):5193⁃5199. doi: 10.1111/jcmm.14393.
|
[30] |
Parsad D, Pandhi R, Juneja A. Effectiveness of oral Ginkgo biloba in treating limited, slowly spreading vitiligo[J]. Clin Exp Dermatol, 2003,28(3):285⁃287. doi: 10.1046/j.1365⁃2230.2003. 01207.x.
|
[31] |
Zhang X, Liu D, He M, et al. Polymeric nanoparticles containing rapamycin and autoantigen induce antigen⁃specific immunological tolerance for preventing vitiligo in mice[J]. Hum Vaccin Immunother, 2021,17(7):1923⁃1929. doi: 10.1080/2164 5515.2021.1872342.
|
[32] |
Zhang Y, Swanda RV, Nie L, et al. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation[J]. Nat Commun, 2021,12(1):1589. doi:10.1038/s41467⁃021⁃21841⁃w.
|
[33] |
Feng Z, Qin Y, Huo F, et al. NMN recruits GSH to enhance GPX4⁃mediated ferroptosis defense in UV irradiation induced skin injury[J]. Biochim Biophys Acta Mol Basis Dis, 2022,1868(1):166287. doi:10.1016/j.bbadis.2021.166287.
|
[34] |
LeWitt TM, Kundu RV. Vitiligo[J]. JAMA Dermatol, 2021,157(9):1136. doi:10.1001/jamadermatol.2021.1688.
|