中华皮肤科杂志 ›› 2024, e20220865.doi: 10.35541/cjd.20220865
陈星宇 姚煦
收稿日期:
2022-12-05
修回日期:
2023-12-22
发布日期:
2024-02-06
通讯作者:
姚煦
E-mail:dryao_xu@126.com
基金资助:
Chen Xingyu, Yao Xu
Received:
2022-12-05
Revised:
2023-12-22
Published:
2024-02-06
Contact:
Yao Xu
E-mail:dryao_xu@126.com
Supported by:
摘要: 【摘要】 中性粒细胞是机体免疫防御系统中的重要细胞之一,既往被视为固有免疫的参与者,随着研究的不断深入,发现其具有调节特性,可通过传达激活、抑制和迁移信号,引导并调节局部免疫反应。近年来多项炎症性皮肤病相关研究也揭示了中性粒细胞在皮肤病发生发展中的重要作用。在银屑病中,中性粒细胞可间接通过白细胞介素17/白细胞介素23轴或抗菌肽增强炎症反应;在系统性红斑狼疮中,中性粒细胞能调节干扰素信号转导和自身抗体的形成;在特应性皮炎中,中性粒细胞影响细菌定植和瘙痒等。因此,中性粒细胞在炎症性皮肤病中的主要作用机制包括中性粒细胞参与免疫细胞交流网络调控疾病发展和中性粒细胞的炎性死亡方式NETosis在疾病免疫中产生多重影响。本文综述中性粒细胞在部分炎症性皮肤病发生发展中的作用研究进展。
陈星宇 姚煦. 中性粒细胞在炎症性皮肤病中的研究进展[J]. 中华皮肤科杂志, 2024,e20220865. doi:10.35541/cjd.20220865
Chen Xingyu, Yao Xu. Role of neutrophils in inflammatory dermatoses[J]. Chinese Journal of Dermatology,2024,e20220865. doi:10.35541/cjd.20220865
[1] | Burn GL, Foti A, Marsman G, et al. The neutrophil[J]. Immunity, 2021,54(7):1377⁃1391. doi: 10.1016/j.immuni.2021.06.006. |
[2] | Stark MA, Huo Y, Burcin TL, et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL⁃23 and IL⁃17[J]. Immunity, 2005,22(3):285⁃294. doi: 10.1016/j.immuni.2005.01. 011. |
[3] | Nakabo S, Romo⁃Tena J, Kaplan MJ. Neutrophils as drivers of immune dysregulation in autoimmune diseases with skin manifestations[J]. J Invest Dermatol, 2022,142(3 Pt B):823⁃833. doi: 10.1016/j.jid.2021.04.014. |
[4] | Caielli S, Athale S, Domic B, et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus[J]. J Exp Med, 2016,213(5):697⁃713. doi: 10.1084/jem.20151876. |
[5] | Papayannopoulos V. Neutrophil extracellular traps in immunity and disease[J]. Nat Rev Immunol, 2018,18(2):134⁃147. doi: 10.1038/nri.2017.105. |
[6] | Eash KJ, Greenbaum AM, Gopalan PK, et al. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow[J]. J Clin Invest, 2010,120(7):2423⁃2431. doi: 10.1172/JCI41649. |
[7] | Pérez⁃Figueroa E, Álvarez⁃Carrasco P, Ortega E, et al. Neutrophils: many ways to die[J]. Front Immunol, 2021,12:631821. doi: 10.3389/fimmu.2021.631821. |
[8] | Pires RH, Felix SB, Delcea M. The architecture of neutrophil extracellular traps investigated by atomic force microscopy[J]. Nanoscale, 2016,8(29):14193⁃14202. doi: 10.1039/c6nr03416k. |
[9] | Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004,303(5663):1532⁃1535. doi: 10.1126/science.1092385. |
[10] | Garcia⁃Romo GS, Caielli S, Vega B, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus[J]. Sci Transl Med, 2011,3(73):73ra20. doi: 10.1126/scitranslmed.3001201. |
[11] | Kienhöfer D, Hahn J, Stoof J, et al. Experimental lupus is aggravated in mouse strains with impaired induction of neutrophil extracellular traps[J]. JCI Insight, 2017,2(10):e92920. doi: 10.1172/jci.insight.92920. |
[12] | van der Linden M, van den Hoogen LL, Westerlaken G, et al. Neutrophil extracellular trap release is associated with antinuclear antibodies in systemic lupus erythematosus and anti⁃phospholipid syndrome[J]. Rheumatology (Oxford), 2018,57(7):1228⁃1234. doi: 10.1093/rheumatology/key067. |
[13] | Carmona⁃Rivera C, Zhao W, Yalavarthi S, et al. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase⁃2[J]. Ann Rheum Dis, 2015,74(7):1417⁃1424. doi: 10.1136/annrheumdis⁃2013⁃204837. |
[14] | Radermecker C, Sabatel C, Vanwinge C, et al. Locally instructed CXCR4hi neutrophils trigger environment⁃driven allergic asthma through the release of neutrophil extracellular traps[J]. Nat Immunol, 2019,20(11):1444⁃1455. doi: 10.1038/s41590⁃019⁃0496⁃9. |
[15] | Guo Y, Kasahara S, Jhingran A, et al. During Aspergillus infection, monocyte⁃derived DCs, neutrophils, and plasmacytoid DCs enhance innate immune defense through CXCR3⁃dependent crosstalk[J]. Cell Host Microbe, 2020,28(1):104⁃116.e4. doi: 10.1016/j.chom.2020.05.002. |
[16] | Funch AB, Mraz V, Gadsbøll AØ, et al. CD8+ tissue⁃resident memory T cells recruit neutrophils that are essential for flare⁃ups in contact dermatitis[J]. Allergy, 2022,77(2):513⁃524. doi: 10. 1111/all.14986. |
[17] | Wang J, Wang J. Neutrophils, functions beyond host defense[J]. Cell Immunol, 2022,379:104579. doi: 10.1016/j.cellimm.2022. 104579. |
[18] | Özcan A, Collado⁃Diaz V, Egholm C, et al. CCR7⁃guided neutrophil redirection to skin⁃draining lymph nodes regulates cutaneous inflammation and infection[J]. Sci Immunol, 2022,7(68):eabi9126. doi: 10.1126/sciimmunol.abi9126. |
[19] | Rodriguez⁃Rosales YA, Langereis JD, Gorris M, et al. Immunomodulatory aged neutrophils are augmented in blood and skin of psoriasis patients[J]. J Allergy Clin Immunol, 2021,148(4):1030⁃1040. doi: 10.1016/j.jaci.2021.02.041. |
[20] | Czerwińska J, Owczarczyk⁃Saczonek A. The role of the neutrophilic network in the pathogenesis of psoriasis[J]. Int J Mol Sci, 2022,23(3):1840. doi: 10.3390/ijms23031840. |
[21] | Dragan M, Sun P, Chen Z, et al. Epidermis⁃intrinsic transcription factor Ovol1 coordinately regulates barrier maintenance and neutrophil accumulation in psoriasis⁃like inflammation[J]. J Invest Dermatol, 2022,142(3 Pt A):583⁃593.e5. doi: 10.1016/j.jid.2021.08.397. |
[22] | Skrzeczynska⁃Moncznik J, Zabieglo K, Osiecka O, et al. Differences in staining for neutrophil elastase and its controlling inhibitor SLPI reveal heterogeneity among neutrophils in psoriasis[J]. J Invest Dermatol, 2020,140(7):1371⁃1378.e3. doi: 10.1016/j.jid.2019.12.015. |
[23] | Kim HJ, Roh JY, Jung Y. Eosinophils accelerate pathogenesis of psoriasis by supporting an inflammatory milieu that promotes neutrophil infiltration[J]. J Invest Dermatol, 2018,138(10):2185⁃2194. doi: 10.1016/j.jid.2018.03.1509. |
[24] | Metzemaekers M, Gouwy M, Proost P. Neutrophil chemoattractant receptors in health and disease: double⁃edged swords[J]. Cell Mol Immunol, 2020,17(5):433⁃450. doi: 10.1038/s41423⁃020⁃0412⁃0. |
[25] | Liu XT, Shi ZR, Lu SY, et al. Enhanced migratory ability of neutrophils toward epidermis contributes to the development of psoriasis via crosstalk with keratinocytes by releasing IL⁃17A[J]. Front Immunol, 2022,13:817040. doi: 10.3389/fimmu.2022. 817040. |
[26] | Chen J, Zhu Z, Li Q, et al. Neutrophils enhance cutaneous vascular dilation and permeability to aggravate psoriasis by releasing matrix metallopeptidase 9[J]. J Invest Dermatol, 2021,141(4):787⁃799. doi: 10.1016/j.jid.2020.07.028. |
[27] | Chiang CC, Cheng WJ, Korinek M, et al. Neutrophils in psoriasis[J]. Front Immunol, 2019,10:2376. doi: 10.3389/fimmu.2019. 02376. |
[28] | Lande R, Botti E, Jandus C, et al. The antimicrobial peptide LL37 is a T⁃cell autoantigen in psoriasis[J]. Nat Commun, 2014,5:5621. doi: 10.1038/ncomms6621. |
[29] | Ganguly D, Chamilos G, Lande R, et al. Self⁃RNA⁃antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8[J]. J Exp Med, 2009,206(9):1983⁃1994. doi: 10. 1084/jem.20090480. |
[30] | Xhindoli D, Pacor S, Benincasa M, et al. The human cathelicidin LL⁃37⁃⁃a pore⁃forming antibacterial peptide and host⁃cell modulator[J]. Biochim Biophys Acta, 2016,1858(3):546⁃566. doi: 10.1016/j.bbamem.2015.11.003. |
[31] | Herster F, Bittner Z, Archer NK, et al. Neutrophil extracellular trap⁃associated RNA and LL37 enable self⁃amplifying inflammation in psoriasis[J]. Nat Commun, 2020,11(1):105. doi: 10.1038/s41467⁃019⁃13756⁃4. |
[32] | Lambert S, Hambro CA, Johnston A, et al. Neutrophil extracellular traps induce human Th17 cells: effect of psoriasis⁃associated TRAF3IP2 genotype[J]. J Invest Dermatol, 2019,139(6):1245⁃1253. doi: 10.1016/j.jid.2018.11.021. |
[33] | Skrzeczynska⁃Moncznik J, Zabieglo K, Bossowski JP, et al. Eosinophils regulate interferon alpha production in plasmacytoid dendritic cells stimulated with components of neutrophil extracellular traps[J]. J Interferon Cytokine Res, 2017,37(3):119⁃128. doi: 10.1089/jir.2016.0036. |
[34] | Carmona⁃Rivera C, Kaplan MJ. Low⁃density granulocytes: a distinct class of neutrophils in systemic autoimmunity[J]. Semin Immunopathol, 2013,35(4):455⁃463. doi: 10.1007/s00281⁃013⁃0375⁃7. |
[35] | Fresneda Alarcon M, McLaren Z, Wright HL. Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: same foe different M.O[J]. Front Immunol, 2021,12:649693. doi: 10.3389/fimmu.2021.649693. |
[36] | Rahman S, Sagar D, Hanna RN, et al. Low⁃density granulocytes activate T cells and demonstrate a non⁃suppressive role in systemic lupus erythematosus[J]. Ann Rheum Dis, 2019,78(7):957⁃966. doi: 10.1136/annrheumdis⁃2018⁃214620. |
[37] | Mistry P, Nakabo S, O′Neil L, et al. Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus[J]. Proc Natl Acad Sci U S A, 2019,116(50):25222⁃25228. doi: 10.1073/pnas.1908576116. |
[38] | Kahlenberg JM, Carmona⁃Rivera C, Smith CK, et al. Neutrophil extracellular trap⁃associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages[J]. J Immunol, 2013,190(3):1217⁃1226. doi: 10.4049/jimmunol.1202388. |
[39] | Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF⁃kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression[J]. J Immunol, 2009,183(2):787⁃791. doi: 10.4049/jimmunol.0901363. |
[40] | Gestermann N, Di Domizio J, Lande R, et al. Netting neutrophils activate autoreactive B cells in lupus[J]. J Immunol, 2018,200(10):3364⁃3371. doi: 10.4049/jimmunol.1700778. |
[41] | Lande R, Ganguly D, Facchinetti V, et al. Neutrophils activate plasmacytoid dendritic cells by releasing self⁃DNA⁃peptide complexes in systemic lupus erythematosus[J]. Sci Transl Med, 2011,3(73):73ra19. doi: 10.1126/scitranslmed.3001180. |
[42] | Diaz⁃Perez JA, Killeen ME, Yang Y, et al. Extracellular ATP and IL⁃23 form a local inflammatory circuit leading to the development of a neutrophil⁃dependent psoriasiform dermatitis[J]. J Invest Dermatol, 2018,138(12):2595⁃2605. doi: 10.1016/j.jid.2018.05.018. |
[43] | Toussaint M, Jackson DJ, Swieboda D, et al. Host DNA released by NETosis promotes rhinovirus⁃induced type⁃2 allergic asthma exacerbation[J]. Nat Med, 2017,23(6):681⁃691. doi: 10.1038/nm.4332. |
[44] | Inokuchi⁃Sakata S, Ishiuji Y, Katsuta M, et al. Role of eosinophil relative count and neutrophil⁃to⁃lymphocyte ratio in the assessment of severity of atopic dermatitis[J]. Acta Derm Venereol, 2021,101(7):adv00491. doi: 10.2340/00015555⁃3838. |
[45] | Impellizzieri D, Ridder F, Raeber ME, et al. IL⁃4 receptor engagement in human neutrophils impairs their migration and extracellular trap formation[J]. J Allergy Clin Immunol, 2019,144(1):267⁃279.e4. doi: 10.1016/j.jaci.2019.01.042. |
[46] | Heeb L, Egholm C, Boyman O. Evolution and function of interleukin⁃4 receptor signaling in adaptive immunity and neutrophils[J]. Genes Immun, 2020,21(3):143⁃149. doi: 10. 1038/s41435⁃020⁃0095⁃7. |
[47] | Woytschak J, Keller N, Krieg C, et al. Type 2 interleukin⁃4 receptor signaling in neutrophils antagonizes their expansion and migration during infection and inflammation[J]. Immunity, 2016,45(1):172⁃184. doi: 10.1016/j.immuni.2016.06.025. |
[48] | Egholm C, Özcan A, Breu D, et al. Type 2 immune predisposition results in accelerated neutrophil aging causing susceptibility to bacterial infection[J]. Sci Immunol, 2022,7(71):eabi9733. doi: 10.1126/sciimmunol.abi9733. |
[49] | Dhingra N, Suárez⁃Fariñas M, Fuentes⁃Duculan J, et al. Attenuated neutrophil axis in atopic dermatitis compared to psoriasis reflects TH17 pathway differences between these diseases[J]. J Allergy Clin Immunol, 2013,132(2):498⁃501.e3. doi: 10.1016/j.jaci.2013.04.043. |
[50] | Bitschar K, Staudenmaier L, Klink L, et al. Staphylococcus aureus skin colonization is enhanced by the interaction of neutrophil extracellular traps with keratinocytes[J]. J Invest Dermatol, 2020,140(5):1054⁃1065.e4. doi: 10.1016/j.jid.2019. 10.017. |
[51] | Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship[J]. Trends Microbiol, 2018,26(6):484⁃497. doi: 10.1016/j.tim.2017.11.008. |
[52] | Liew FY, Girard JP, Turnquist HR. Interleukin⁃33 in health and disease[J]. Nat Rev Immunol, 2016,16(11):676⁃689. doi: 10. 1038/nri.2016.95. |
[53] | Wang X, Li X, Chen L, et al. Interleukin⁃33 facilitates cutaneous defense against Staphylococcus aureus by promoting the develop⁃ment of neutrophil extracellular trap[J]. Int Immunopharmacol, 2020,81:106256. doi: 10.1016/j.intimp.2020.106256. |
[54] | Walsh CM, Hill RZ, Schwendinger⁃Schreck J, et al. Neutrophils promote CXCR3⁃dependent itch in the development of atopic dermatitis[J]. Elife, 2019,8:e48448. doi: 10.7554/eLife.48448. |
[55] | Strzepa A, Gurski CJ, Dittel LJ, et al. Neutrophil⁃derived myeloperoxidase facilitates both the induction and elicitation phases of contact hypersensitivity[J]. Front Immunol, 2020,11:608871. doi: 10.3389/fimmu.2020.608871. |
[56] | Weber FC, Németh T, Csepregi JZ, et al. Neutrophils are required for both the sensitization and elicitation phase of contact hypersensitivity[J]. J Exp Med, 2015,212(1):15⁃22. doi: 10.1084/jem.20130062. |
[57] | Helou DG, Noël B, Gaudin F, et al. Cutting edge: Nrf2 regulates neutrophil recruitment and accumulation in skin during contact hypersensitivity[J]. J Immunol, 2019,202(8):2189⁃2194. doi: 10.4049/jimmunol.1801065. |
[58] | Shibuya R, Ishida Y, Hanakawa S, et al. CCL2⁃CCR2 signaling in the skin drives surfactant⁃induced irritant contact dermatitis through IL⁃1β⁃mediated neutrophil accumulation[J]. J Invest Dermatol, 2022,142(3 Pt A):571⁃582.e9. doi: 10.1016/j.jid. 2021.07.182. |
[59] | Saika A, Nagatake T, Kishino S, et al. 17(S),18(R)⁃epoxyeicosatetraenoic acid generated by cytochrome P450 BM⁃3 from Bacillus megaterium inhibits the development of contact hypersensitivity via G⁃protein⁃coupled receptor 40⁃mediated neutrophil suppression[J]. FASEB Bioadv, 2020,2(1):59⁃71. doi: 10.1096/fba.2019⁃00061. |
[60] | Feldmeyer L, Ribero S, Gloor AD, et al. Neutrophilic dermatoses with unusual and atypical presentations[J]. Clin Dermatol, 2021,39(2):261⁃270. doi: 10.1016/j.clindermatol.2020.10.012. |
[61] | Filosa A, Filosa G. Neutrophilic dermatoses: a broad spectrum of disease[J]. G Ital Dermatol Venereol, 2018,153(2):265⁃272. doi: 10.23736/S0392⁃0488.18.05841⁃8. |
[62] | Weiss EH, Ko CJ, Leung TH, et al. Neutrophilic dermatoses: a clinical update[J]. Curr Dermatol Rep, 2022,11(2):89⁃102. doi: 10.1007/s13671⁃022⁃00355⁃8. |
[63] | Heath MS, Ortega⁃Loayza AG. Insights into the pathogenesis of Sweet′s syndrome[J]. Front Immunol, 2019,10:414. doi: 10. 3389/fimmu.2019.00414. |
[64] | Nelson CA, Stephen S, Ashchyan HJ, et al. Neutrophilic dermatoses: pathogenesis, Sweet syndrome, neutrophilic eccrine hidradenitis, and Behçet disease[J]. J Am Acad Dermatol, 2018,79(6):987⁃1006. doi: 10.1016/j.jaad.2017.11.064. |
[65] | Maverakis E, Marzano AV, Le ST, et al. Pyoderma gangrenosum[J]. Nat Rev Dis Primers, 2020,6(1):81. doi: 10.1038/s41572⁃020⁃0213⁃x. |
[66] | Bonnekoh H, Scheffel J, Wu J, et al. Skin and systemic inflammation in Schnitzler′s syndrome are associated with neutrophil extracellular trap formation[J]. Front Immunol, 2019,10:546. doi: 10.3389/fimmu.2019.00546. |
[67] | Eid E, Safi R, El Hasbani G, et al. Characterizing the presence of neutrophil extracellular traps in neutrophilic dermatoses[J]. Exp Dermatol, 2021,30(7):988⁃994. doi: 10.1111/exd.14360. |
[68] | Mistry P, Carmona⁃Rivera C, Ombrello AK, et al. Dysregulated neutrophil responses and neutrophil extracellular trap formation and degradation in PAPA syndrome[J]. Ann Rheum Dis, 2018,77(12):1825⁃1833. doi: 10.1136/annrheumdis⁃2018⁃213746. |
[1] | 金兰 邱云 王唯嘉 康晓静 丁媛. [开放获取] 生物制剂治疗老年中重度银屑病124例的临床疗效和安全性回顾分析[J]. 中华皮肤科杂志, 2025, 58(1): 47-52. |
[2] | 王博 郑捷. 老年银屑病和特应性皮炎患者生物制剂及小分子药物治疗中应注意的问题[J]. 中华皮肤科杂志, 2025, 58(1): 72-75. |
[3] | 杨子靖 陈利红 阮叶平 文莞廷 张嘉艺 王海伦 潘萌 赵肖庆. 度普利尤单抗治疗老年性特应性皮炎的疗效及安全性研究[J]. 中华皮肤科杂志, 2025, 58(1): 65-69. |
[4] | 王迪 张瑞珺 康玉英. 脂溢性皮炎的发病机制及治疗研究进展[J]. 中华皮肤科杂志, 2025, 58(1): 89-92. |
[5] | 陈嘉琪 张禁 唐隽. 新型冠状病毒感染与银屑病之间关系的研究进展[J]. 中华皮肤科杂志, 2025, 58(1): 84-88. |
[6] | 王瑞霞 曲岩磊 艾文锦 闫琳 曲才杰 史同新. 非大疱性嗜中性红斑狼疮1例[J]. 中华皮肤科杂志, 2024, 57(9): 832-834. |
[7] | 乔嘉熙 夏萍 陈柳青. 司库奇尤单抗治疗前后银屑病局部皮损皮肤镜和反射式共聚焦显微镜特征分析[J]. 中华皮肤科杂志, 2024, 57(9): 825-829. |
[8] | 窦进法 王建波 张帅 李建国 刘鸿伟 张守民. 新型冠状病毒感染疫情期间接受生物制剂治疗的中重度斑块状银屑病患者病情变化及影响因素分析:单中心横断面研究[J]. 中华皮肤科杂志, 2024, 57(8): 739-742. |
[9] | 林子沅 庞天怡 武静文 靳慧. 多环芳烃在炎症性皮肤病发生发展中的作用研究进展[J]. 中华皮肤科杂志, 2024, 57(8): 765-769. |
[10] | 胡清洁 徐康 朱虹 姚煦. 老年特应性皮炎患者使用度普利尤单抗治疗的药物留存率及安全性回顾性队列分析[J]. 中华皮肤科杂志, 2024, 57(7): 632-636. |
[11] | 中华医学会皮肤性病学分会 中国康复医学会皮肤性病学分会 中国医师协会皮肤科医师分会. [开放获取] 过敏原特异性IgE检测在特应性皮炎中的临床应用专家共识(2024版)[J]. 中华皮肤科杂志, 2024, 57(6): 493-502. |
[12] | 隋长霖 常晓 赵琪 朱威. 抗肿瘤靶向和免疫治疗致银屑病研究进展[J]. 中华皮肤科杂志, 2024, 57(6): 570-574. |
[13] | 中国特应性皮炎门诊病历专家共识编写组. [开放获取] 中国特应性皮炎门诊病历模板专家共识(2024)[J]. 中华皮肤科杂志, 2024, 0(5): 20240141-e20240141. |
[14] | 张元文 孙从乾 潘文东. 肉毒毒素在皮肤科的超适应证临床应用[J]. 中华皮肤科杂志, 2024, 57(5): 471-475. |
[15] | 罗帅寒天 龙海 陆前进, . 2023年系统性红斑狼疮研究新进展[J]. 中华皮肤科杂志, 2024, 57(5): 468-471. |
|