中华皮肤科杂志 ›› 2024, Vol. 57 ›› Issue (5): 445-449.doi: 10.35541/cjd.20240034

• 论著 • 上一篇    下一篇

2018—2023年中国淋病流行趋势及时空分布特征

卢文杰1    梁诗晴1    岳晓丽2    李婧2    张家晖2    龚向东1,2   

  1. 1南京医科大学公共卫生学院,南京  211166;2中国医学科学院  北京协和医学院皮肤病医院  中国疾病预防控制中心性病控制中心流行病学室,南京  210042
  • 收稿日期:2024-01-18 修回日期:2024-03-01 发布日期:2024-04-30
  • 通讯作者: 龚向东 E-mail:gxdchina@163.com
  • 基金资助:
    中国医学科学院医学与健康科技创新工程项目(CIFMS-2021-I2M-1-001)

Epidemic trends and spatiotemporal distribution characteristics of gonorrhea in China from 2018 to 2023

Lu Wenjie1, Liang Shiqing1, Yue Xiaoli2, Li Jing2, Zhang Jiahui2, Gong Xiangdong1,2   

  1. 1School of Public Health, Nanjing Medical University, Nanjing 211166, China; 2Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Division of Sexually Transmitted Disease Epidemiology, National Center for STD Control of Chinese Center for Disease Control and Prevention, Nanjing 210042, China
  • Received:2024-01-18 Revised:2024-03-01 Published:2024-04-30
  • Contact: Gong Xiangdong E-mail:gxdchina@163.com
  • Supported by:
    CAMS Innovation Fund for Medical Sciences (CIFMS-2021-I2M-1-001)

摘要: 【摘要】 目的 了解我国淋病近年流行趋势与时空分布特征,为我国淋病的精准防控提供参考依据。方法 通过中国疾病预防控制信息系统传染病监测系统收集2018—2023 年全国(不含港澳台地区)各县区淋病病例报告数据,使用Joinpoint回归模型分析我国淋病报告发病率趋势。采用全局空间自相关中的Moran指数、全局G系数与局部空间自相关分析探索淋病在县区层面的聚集模式及热点地区,通过时空扫描分析中的Poisson分布模型识别淋病聚集区。结果 2018—2023年我国淋病的报告发病率由9.59/10万下降到7.35/10万,年均变化百分比为-4.9%,发病率下降趋势无统计学意义(P = 0.11)。全国各县区淋病报告发病率呈显著的空间正自相关,Moran指数在0.39 ~ 0.60之间(P<0.001);全局G系数检验统计量Z(G)均>1.96,表明淋病疫情呈现高值聚集模式。局部空间自相关结果显示,热点地区主要分布在我国东南沿海和西南地区。时空扫描共识别出70个聚集区,主要分布在东南沿海和西南地区。结论 近6年我国淋病报告发病率总体上呈波动下降;全国淋病在县区层面有显著的时空聚集特点,热点地区和时空聚集区基本一致,主要分布于东南沿海和西南地区,需进一步调查其成因并采取精准的防控措施。

关键词: 淋病, 发病率, 趋势, 时空聚类分析, 时空分析

Abstract: 【Abstract】 Objective To investigate the recent epidemic trends and spatiotemporal distribution characteristics of gonorrhea in China, and to provide a reference for precise prevention and control of gonorrhea. Methods Data on reported cases of gonorrhea in China (not including Hongkong, Macau and Taiwan regions of China) were collected from the Infectious Diseases Surveillance System of Chinese Disease Prevention and Control Information System from 2018 to 2023. The trends in reported incidence rates of gonorrhea in China were analyzed using the Joinpoint regression model. Global spatial autocorrelation analysis with the Moran′s index and global G-statistic, as well as local spatial autocorrelation analysis, were employed to explore the clustering patterns and hotspot regions of gonorrhea at the county level. In the spatiotemporal scanning analysis, a Poisson distribution model was employed to identify clusters of gonorrhea cases. Results The reported incidence rates of gonorrhea in China decreased from 9.59 per 100 000 in 2018 to 7.35 per 100 000 in 2023, with an average annual percent change of -4.9%, but this decreasing trend was not statistically significant (P = 0.11). The reported incidence rates of gonorrhea at the county level in China exhibited a significant positive global spatial autocorrelation, with the global Moran′s indices ranging from 0.39 to 0.60 (all P < 0.001); the Getis-Ord general G test statistic Z(G) values were all greater than 1.96, indicating a high-value clustering pattern of gonorrhea cases. The local spatial autocorrelation analysis showed that hotspot regions were predominantly distributed in southeastern coastal areas and southwestern China. A total of 70 clusters were identified through the spatiotemporal scanning analysis, and mainly located in southeastern coastal areas and southwestern China. Conclusions In recent 6 years, the overall reported incidence rates of gonorrhea in China showed a fluctuating decline; there was a significant spatiotemporal clustering characteristic with regard to gonorrhea epidemic at the county level in China, and the hotspot regions were basically consistent with the spatiotemporal clusters, which were mainly distributed in southeastern coastal areas and southwestern China. Further investigation into the causes and precise prevention and control measures are needed.

Key words: Gonorrhea, Incidence, Trend, Space-time clustering, Spatiotemporal analysis

引用本文

卢文杰 梁诗晴 岳晓丽 李婧 张家晖 龚向东, . 2018—2023年中国淋病流行趋势及时空分布特征[J]. 中华皮肤科杂志, 2024,57(5):445-449. doi:10.35541/cjd.20240034

Lu Wenjie, Liang Shiqing, Yue Xiaoli, Li Jing, Zhang Jiahui, Gong Xiangdong, . Epidemic trends and spatiotemporal distribution characteristics of gonorrhea in China from 2018 to 2023[J]. Chinese Journal of Dermatology, 2024, 57(5): 445-449.doi:10.35541/cjd.20240034