[1] |
Nakai K, Tsuruta D. What are reactive oxygen species, free radicals, and oxidative stress in skin diseases?[J]. Int J Mol Sci, 2021,22(19). doi: 10.3390/ijms221910799.
|
[2] |
Miao Y, Qu Q, Jiang W, et al. Identification of functional patterns of androgenetic alopecia using transcriptome profiling in distinct locations of hair follicles[J]. J Invest Dermatol, 2018,138(4):972⁃975. doi: 10.1016/j.jid.2017.10.027.
|
[3] |
Griggs J, Trüeb RM, Gavazzoni Dias MFR, et al. Fibrosing alopecia in a pattern distribution [J]. J Am Acad Dermatol, 2021,85(6):1557⁃1564. doi: 10.1016/j.jaad.2019.12.056.
|
[4] |
Prie BE, Iosif L, Tivig I, et al. Oxidative stress in androgenetic alopecia[J]. J Med Life, 2016,9(1):79⁃83.
|
[5] |
Singh KK. Mitochondrial Secrets of Youthfulness[J]. Plast Reconstr Surg, 2021,147(1S⁃2):33S⁃37S. doi: 10.1097/PRS.0000 000000007619
|
[6] |
Honda Igarashi M, da Silva SG, Mercuri M, et al. Novel complex of cosmetic ingredients with promising action in preventing hair loss and follicular aging through mechanism involving enrichment of WNT/signaling, mitochondrial activity, and stem cells maintenance[J]. J Cosmet Dermatol, 2021,20(7):2179⁃2189. doi: 10.1111/jocd.13815.
|
[7] |
Patra V, Laoubi L, Nicolas JF, et al. A perspective on the interplay of ultraviolet⁃radiation, skin microbiome and skin resident memory TCRαβ+ cells[J]. Front Med (Lausanne), 2018,5:166. doi: 10.3389/fmed.2018.00166.
|
[8] |
See SH ,Tan TL, Aderibigbe Q, et al. Tale of two alopecias: alopecia areata and central centrifugal cicatricial alopecia occurring in the same patient [J]. Int J Dermatol Venereol, 2022,5(1):45⁃49. doi: 10.1097/JD9.0000000000000183.
|
[9] |
Suzuki K, Inoue M, Cho O, et al. Scalp microbiome and sebum composition in Japanese male individuals with and without androgenetic alopecia[J]. Microorganisms, 2021,9(10). doi: 10.3390/microorganisms9102132.
|
[10] |
Takayama S, Kawanishi M, Yamauchi K, et al. Ellagitannins from Rosa roxburghii suppress poly(I:C)⁃induced IL⁃8 production in human keratinocytes[J]. J Nat Med, 2021,75(3):623⁃632. doi: 10.1007/s11418⁃021⁃01509⁃x.
|
[11] |
Trüeb RM. Effect of ultraviolet radiation, smoking and nutrition on hair[J]. Curr Probl Dermatol, 2015,47:107⁃120. doi: 10.1159/000369411.
|
[12] |
Gherardini J, Wegner J, Chéret J, et al. Transepidermal UV radiation of scalp skin ex vivo induces hair follicle damage that is alleviated by the topical treatment with caffeine[J]. Int J Cosmet Sci, 2019,41(2):164⁃182. doi: 10.1111/ics.12521.
|
[13] |
郑优优, 范卫新. 日光对头发的损伤[J]. 临床皮肤科杂志, 2012,41(11):705⁃707. doi: 10.3969/j.issn.1000⁃4963.2012.11. 034.
|
[14] |
Chen SJ, Hseu YC, Gowrisankar YV, et al. The anti⁃melanogenic effects of 3⁃O⁃ethyl ascorbic acid via Nrf2⁃mediated α⁃MSH inhibition in UVA⁃irradiated keratinocytes and autophagy induction in melanocytes[J]. Free Radic Biol Med, 2021,173:151⁃169. doi: 10.1016/j.freeradbiomed.2021.07.030.
|
[15] |
Grace SA, Sutton AM, Abraham N, et al. Presence of mast cells and mast cell degranulation in scalp biopsies of telogen effluvium[J]. Int J Trichology, 2017,9(1):25⁃29. doi: 10.4103/ijt.ijt_43_16.
|
[16] |
Moattari CR, Granstein RD. Neuropeptides and neurohormones in immune, inflammatory and cellular responses to ultraviolet radiation[J]. Acta Physiol (Oxf), 2021,232(1):e13644. doi: 10.1111/apha.13644.
|
[17] |
Maurer M, Fischer E, Handjiski B, et al. Activated skin mast cells are involved in murine hair follicle regression (catagen)[J]. Lab Invest, 1997,77(4):319⁃332.
|
[18] |
Krutmann J, Liu W, Li L, et al. Pollution and skin: from epidemiological and mechanistic studies to clinical implications[J]. J Dermatol Sci, 2014,76(3):163⁃168. doi: 10.1016/j.jdermsci. 2014.08.008.
|
[19] |
Williams R, Pawlus AD, Thornton MJ. Getting under the skin of hair aging: the impact of the hair follicle environment[J]. Exp Dermatol, 2020,29(7):588⁃597. doi: 10.1111/exd.14109.
|
[20] |
Tanimura S, Tadokoro Y, Inomata K, et al. Hair follicle stem cells provide a functional niche for melanocyte stem cells[J]. Cell Stem Cell, 2011,8(2):177⁃187. doi: 10.1016/j.stem.2010. 11.029.
|
[21] |
Matsumura H, Mohri Y, Binh NT, et al. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis[J]. Science, 2016,351(6273):aad4395. doi: 10.1126/science.aad4395.
|
[22] |
Richard F, Creusot T, Catoire S, et al. Mechanisms of pollutant⁃induced toxicity in skin and detoxification: anti⁃pollution strategies and perspectives for cosmetic products[J]. Ann Pharm Fr, 2019,77(6):446⁃459. doi: 10.1016/j.pharma.2019.07.001.
|
[23] |
Upton JH, Hannen RF, Bahta AW, et al. Oxidative stress⁃associated senescence in dermal papilla cells of men with androgenetic alopecia[J]. J Invest Dermatol, 2015,135(5):1244⁃1252. doi: 10.1038/jid.2015.28.
|
[24] |
Tobin DJ, Gunin A, Magerl M, et al. Plasticity and cytokinetic dynamics of the hair follicle mesenchyme: implications for hair growth control[J]. J Invest Dermatol, 2003,120(6):895⁃904. doi: 10.1046/j.1523⁃1747.2003.12237.x.
|
[25] |
Shin W, Rosin NL, Sparks H, et al. Dysfunction of hair follicle mesenchymal progenitors contributes to age⁃associated hair loss[J]. Dev Cell, 2020,53(2):185⁃198.e7. doi: 10.1016/j.devcel.2020. 03.019.
|
[26] |
Chi W, Wu E, Morgan BA. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline[J]. Development, 2013,140(8):1676⁃1683. doi: 10.1242/ dev.090662.
|
[27] |
Fitsiou E, Pulido T, Campisi J, et al. Cellular senescence and the senescence⁃associated secretory phenotype as drivers of skin photoaging[J]. J Invest Dermatol, 2021,141(4S):1119⁃1126. doi: 10.1016/j.jid.2020.09.031.
|
[28] |
Budden T, Gaudy⁃Marqueste C, Porter A, et al. Ultraviolet light⁃induced collagen degradation inhibits melanoma invasion[J]. Nat Commun, 2021,12(1):2742. doi: 10.1038/s41467⁃021⁃22953⁃z.
|
[29] |
Williams R, Westgate GE, Pawlus AD, et al. Age⁃related changes in female scalp dermal sheath and dermal fibroblasts: how the hair follicle environment impacts hair aging[J]. J Invest Dermatol, 2021,141(4S):1041⁃1051. doi: 10.1016/j.jid.2020.11. 009.
|
[30] |
Lichtenberger BM, Mastrogiannaki M, Watt FM. Epidermal β⁃catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages[J]. Nat Commun, 2016,7:10537. doi: 10.1038/ncomms10537.
|
[31] |
Starcher B, Pierce R, Hinek A. UVB irradiation stimulates deposition of new elastic fibers by modified epithelial cells surrounding the hair follicles and sebaceous glands in mice[J]. J Invest Dermatol, 1999,112(4):450⁃455. doi: 10.1046/j.1523⁃1747.1999.00553.x.
|