Chinese Journal of Dermatology ›› 2022, Vol. 55 ›› Issue (9): 825-829.doi: 10.35541/cjd.20200318
• Reviews • Previous Articles Next Articles
Liu Jin, Shen Zhengyu
Received:
2020-04-01
Revised:
2020-10-13
Online:
2022-09-15
Published:
2022-09-02
Contact:
Shen Zhengyu
E-mail:neuronszy@sina.com
Supported by:
Liu Jin, Shen Zhengyu. Epigenetic regulation in psoriasis[J]. Chinese Journal of Dermatology, 2022, 55(9): 825-829.doi:10.35541/cjd.20200318
[1] | Pollock RA, Abji F, Gladman DD. Epigenetics of psoriatic disease: a systematic review and critical appraisal[J]. J Autoimmun, 2017,78:29⁃38. doi: 10.1016/j.jaut.2016.12.002. |
[2] | Frischknecht L, Vecellio M, Selmi C. The role of epigenetics and immunological imbalance in the etiopathogenesis of psoriasis and psoriatic arthritis[J]. Ther Adv Musculoskelet Dis, 2019,11:1759720X19886505. doi: 10.1177/1759720X19886505. |
[3] | Rendon A, Schäkel K. Psoriasis pathogenesis and treatment[J]. Int J Mol Sci, 2019,20(6):1475. doi: 10.3390/ijms20061475. |
[4] | Barros SP, Hefni E, Nepomuceno R, et al. Targeting epigenetic mechanisms in periodontal diseases[J]. Periodontol 2000, 2018,78(1):174⁃184. doi: 10.1111/prd.12231. |
[5] | Mervis JS, McGee JS. DNA methylation and inflammatory skin diseases[J]. Arch Dermatol Res, 2020,312(7):461⁃466. doi: 10. 1007/s00403⁃019⁃02005⁃9. |
[6] | Chen M, Wang Y, Yao X, et al. Hypermethylation of HLA⁃C may be an epigenetic marker in psoriasis[J]. J Dermatol Sci, 2016,83(1):10⁃16. doi: 10.1016/j.jdermsci.2016.04.003. |
[7] | Yooyongsatit S, Ruchusatsawat K, Noppakun N, et al. Patterns and functional roles of LINE⁃1 and Alu methylation in the keratinocyte from patients with psoriasis vulgaris[J]. J Hum Genet, 2015,60(7):349⁃355. doi: 10.1038/jhg.2015.33. |
[8] | Suarez NA, Macia A, Muotri AR. LINE⁃1 retrotransposons in healthy and diseased human brain[J]. Dev Neurobiol, 2018,78(5):434⁃455. doi: 10.1002/dneu.22567. |
[9] | Zhou F, Wang W, Shen C, et al. Epigenome⁃wide association analysis identified nine skin DNA methylation loci for psoriasis[J]. J Invest Dermatol, 2016,136(4):779⁃787. doi: 10.1016/j.jid.2015.12.029. |
[10] | Verma D, Ekman AK, Bivik Eding C, et al. Genome⁃wide DNA methylation profiling identifies differential methylation in uninvolved psoriatic epidermis[J]. J Invest Dermatol, 2018,138(5):1088⁃1093. doi: 10.1016/j.jid.2017.11.036. |
[11] | Giudice V, Wu Z, Kajigaya S, et al. Circulating S100A8 and S100A9 protein levels in plasma of patients with acquired aplastic anemia and myelodysplastic syndromes[J]. Cytokine, 2019,113:462⁃465. doi: 10.1016/j.cyto.2018.06.025. |
[12] | Roberson ED, Liu Y, Ryan C, et al. A subset of methylated CpG sites differentiate psoriatic from normal skin[J]. J Invest Dermatol, 2012,132(3 Pt 1):583⁃592. doi: 10.1038/jid.2011.348. |
[13] | Granata M, Skarmoutsou E, Gangemi P, et al. S100A7, Jab1, and p27kip1 expression in psoriasis and S100A7 CRISPR⁃activated human keratinocyte cell line[J]. J Cell Biochem, 2019,120(3):3384⁃3392. doi: 10.1002/jcb.27609. |
[14] | D′Amico F, Granata M, Skarmoutsou E, et al. Biological therapy downregulates the heterodimer S100A8/A9 (calprotectin) expression in psoriatic patients[J]. Inflamm Res, 2018,67(7):609⁃616. doi: 10.1007/s00011⁃018⁃1147⁃6. |
[15] | Maurelli M, Gisondi P, Danese E, et al. Psoriasin (S100A7) is increased in the serum of patients with moderate⁃to⁃severe psoriasis[J]. Br J Dermatol, 2020,182(6):1502⁃1503. doi: 10. 1111/bjd.18807. |
[16] | Voss A, Bode G, Sopalla C, et al. Expression of S100A8/A9 in HaCaT keratinocytes alters the rate of cell proliferation and differentiation[J]. FEBS Lett, 2011,585(2):440⁃446. doi: 10. 1016/j.febslet.2010.12.037. |
[17] | Pashirzad M, Shafiee M, Rahmani F, et al. Role of Wnt5a in the pathogenesis of inflammatory diseases[J]. J Cell Physiol, 2017,232(7):1611⁃1616. doi: 10.1002/jcp.25687. |
[18] | Bai J, Liu Z, Xu Z, et al. Epigenetic downregulation of SFRP4 contributes to epidermal hyperplasia in psoriasis[J]. J Immunol, 2015,194(9):4185⁃4198. doi: 10.4049/jimmunol.1403196. |
[19] | Whyte JM, Ellis JJ, Brown MA, et al. Best practices in DNA methylation: lessons from inflammatory bowel disease, psoriasis and ankylosing spondylitis[J]. Arthritis Res Ther, 2019,21(1):133. doi: 10.1186/s13075⁃019⁃1922⁃y. |
[20] | Brandt D, Sergon M, Abraham S, et al. TCR+CD3+CD4-CD8- effector T cells in psoriasis[J]. Clin Immunol, 2017,181:51⁃59. doi: 10.1016/j.clim.2017.06.002. |
[21] | Zong W, Ge Y, Han Y, et al. Hypomethylation of HLA⁃DRB1 and its clinical significance in psoriasis[J]. Oncotarget, 2017,8(7):12323⁃12332. doi: 10.18632/oncotarget.12468. |
[22] | Chandra A, Senapati S, Roy S, et al. Epigenome⁃wide DNA methylation regulates cardinal pathological features of psoriasis[J]. Clin Epigenetics, 2018,10(1):108. doi: 10.1186/s13148⁃018⁃0541⁃9. |
[23] | Pollock RA, Zaman L, Chandran V, et al. Epigenome⁃wide analysis of sperm cells identifies IL22 as a possible germ line risk locus for psoriatic arthritis[J/OL]. PLoS One, 2019,14(2):e0212043. doi: 10.1371/journal.pone.0212043. |
[24] | Shen C, Wen L, Ko R, et al. DNA methylation age is not affected in psoriatic skin tissue[J]. Clin Epigenetics, 2018,10(1):160. doi: 10.1186/s13148⁃018⁃0584⁃y. |
[25] | Wu M, Li X, Zhang C, et al. DNA methylation profile of psoriatic skins from different body locations[J]. Epigenomics, 2019,11(14):1613⁃1625. doi: 10.2217/epi⁃2018⁃0225. |
[26] | Xu Y, Zhang S, Lin S, et al. WERAM: a database of writers, erasers and readers of histone acetylation and methylation in eukaryotes[J]. Nucleic Acids Res, 2017,45(D1):D264⁃D270. doi: 10.1093/nar/gkw1011. |
[27] | Zhang P, Su Y, Zhao M, et al. Abnormal histone modifications in PBMCs from patients with psoriasis vulgaris[J]. Eur J Dermatol, 2011,21(4):552⁃557. doi: 10.1684/ejd.2011.1383. |
[28] | Ekman AK, Enerbäck C. Lack of preclinical support for the efficacy of histone deacetylase inhibitors in the treatment of psoriasis[J]. Br J Dermatol, 2016,174(2):424⁃426. doi: 10. 1111/bjd.14021. |
[29] | Sbidian E, Chaimani A, Garcia⁃Doval I, et al. Systemic pharmacological treatments for chronic plaque psoriasis: a network meta⁃analysis[J/CD]. Cochrane Database Syst Rev, 2017,12:CD011535. doi: 10.1002/14651858.CD011535.pub2. |
[30] | Molinelli E, Campanati A, Brisigotti V, et al. Biologic therapy in psoriasis (Part II): efficacy and safety of new treatment targeting IL23/IL⁃17 pathways[J]. Curr Pharm Biotechnol, 2017,18(12):964⁃978. doi: 10.2174/1389201019666180103140643. |
[31] | Li H, Yao Q, Mariscal AG, et al. Epigenetic control of IL⁃23 expression in keratinocytes is important for chronic skin inflammation[J]. Nat Commun, 2018,9(1):1420. doi: 10.1038/s41467⁃018⁃03704⁃z. |
[32] | Wu R, Zeng J, Yuan J, et al. MicroRNA⁃210 overexpression promotes psoriasis⁃like inflammation by inducing Th1 and Th17 cell differentiation[J]. J Clin Invest, 2018,128(6):2551⁃2568. doi: 10.1172/JCI97426. |
[33] | Ovejero⁃Benito MC, Reolid A, Sánchez⁃Jiménez P, et al. Histone modifications associated with biological drug response in moderate⁃to⁃severe psoriasis[J]. Exp Dermatol, 2018,27(12):1361⁃1371. doi: 10.1111/exd.13790. |
[34] | Lu TX, Rothenberg ME. MicroRNA[J]. J Allergy Clin Immunol, 2018,141(4):1202⁃1207. doi: 10.1016/j.jaci.2017.08.034. |
[35] | Srivastava A, Nikamo P, Lohcharoenkal W, et al. MicroRNA⁃146a suppresses IL⁃17⁃mediated skin inflammation and is genetically associated with psoriasis[J]. J Allergy Clin Immunol, 2017,139(2):550⁃561. doi: 10.1016/j.jaci.2016.07.025. |
[36] | Stepicheva NA, Song JL. Function and regulation of microRNA⁃31 in development and disease[J]. Mol Reprod Dev, 2016,83(8):654⁃674. doi: 10.1002/mrd.22678. |
[37] | Yan S, Xu Z, Lou F, et al. NF⁃κB⁃induced microRNA⁃31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis[J]. Nat Commun, 2015,6:7652. doi: 10.1038/ncomms8652. |
[38] | Zhang W, Yi X, An Y, et al. MicroRNA⁃17⁃92 cluster promotes the proliferation and the chemokine production of keratinocytes: implication for the pathogenesis of psoriasis[J]. Cell Death Dis, 2018,9(5):567. doi: 10.1038/s41419⁃018⁃0621⁃y. |
[39] | Wu Y, Liu L, Bian C, et al. MicroRNA let⁃7b inhibits keratinocyte differentiation by targeting IL⁃6 mediated ERK signaling in psoriasis[J]. Cell Commun Signal, 2018,16(1):58. doi: 10.1186/s12964⁃018⁃0271⁃9. |
[40] | Yu X, An J, Hua Y, et al. MicroRNA⁃194 regulates keratinocyte proliferation and differentiation by targeting Grainyhead⁃like 2 in psoriasis[J]. Pathol Res Pract, 2017,213(2):89⁃97. doi: 10. 1016/j.prp.2016.11.020. |
[41] | Tang Y, Zhou T, Yu X, et al. The role of long non⁃coding RNAs in rheumatic diseases[J]. Nat Rev Rheumatol, 2017,13(11):657⁃669. doi: 10.1038/nrrheum.2017.162. |
[42] | Széll M, Danis J, Bata⁃Csörgő Z, et al. PRINS, a primate⁃specific long non⁃coding RNA, plays a role in the keratinocyte stress response and psoriasis pathogenesis[J]. Pflugers Arch, 2016,468(6):935⁃943. doi: 10.1007/s00424⁃016⁃1803⁃z. |
[43] | Danis J, Göblös A, Bata⁃Csörgő Z, et al. PRINS non⁃coding RNA regulates nucleic acid⁃induced innate immune responses of human keratinocytes[J]. Front Immunol, 2017,8:1053. doi: 10. 3389/fimmu.2017.01053. |
[44] | Ahn R, Gupta R, Lai K, et al. Network analysis of psoriasis reveals biological pathways and roles for coding and long non⁃coding RNAs[J]. BMC Genomics, 2016,17(1):841. doi: 10.1186/ s12864⁃016⁃3188⁃y. |
[45] | Shao S, Gudjonsson JE. Epigenetics of psoriasis[J]. Adv Exp Med Biol, 2020,1253:209⁃221. doi: 10.1007/978⁃981⁃15⁃3449⁃2_8. |
[46] | Qiao M, Ding J, Yan J, et al. Circular RNA expression profile and analysis of their potential function in psoriasis[J]. Cell Physiol Biochem, 2018,50(1):15⁃27. doi: 10.1159/000493952. |
[47] | Liu R, Wang Q, Chang W, et al. Characterisation of the circular RNA landscape in mesenchymal stem cells from psoriatic skin lesions[J]. Eur J Dermatol, 2019,29(1):29⁃38. doi: 10.1684/ejd.2018.3483. |
[48] | Batycka⁃Baran A, Hattinger E, Zwicker S, et al. Leukocyte⁃derived koebnerisin (S100A15) and psoriasin (S100A7) are systemic mediators of inflammation in psoriasis[J]. J Dermatol Sci, 2015,79(3):214⁃221. doi: 10.1016/j.jdermsci.2015.05.007. |
[49] | Glazewska EK, Niczyporuk M, Lawicki S, et al. ROC analysis of selected matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in psoriatic patients[J]. Postepy Dermatol Alergol, 2018,35(2):167⁃173. doi: 10.5114/ada.2018.75238. |
[50] | Qiao M, Li R, Zhao X, et al. Up⁃regulated lncRNA⁃MSX2P1 promotes the growth of IL⁃22⁃stimulated keratinocytes by inhibiting miR⁃6731⁃5p and activating S100A7[J]. Exp Cell Res, 2018,363(2):243⁃254. doi: 10.1016/j.yexcr.2018.01.014. |
[51] | Abhishek S, Palamadai Krishnan S. Epidermal differentiation complex: areview on its epigenetic regulation and potential drug targets[J]. Cell J, 2016,18(1):1⁃6. doi: 10.22074/cellj.2016. 3980. |
[52] | Guinea⁃Viniegra J, Jiménez M, Schonthaler HB, et al. Targeting miR⁃21 to treat psoriasis[J]. Sci Transl Med, 2014,6(225):225re1. doi: 10.1126/scitranslmed.3008089. |
[1] | Xiao Chunying, Wang Gang. Roles of Langerhans cells in psoriasis [J]. Chinese Journal of Dermatology, 2022, 55(9): 830-834. |
[2] | Zheng Jiayuan, Yu Bingqian, Chen Xianxia, Luo Zhicheng. Characteristics of pruritus in adult patients with psoriasis vulgaris and its effect on quality of life [J]. Chinese Journal of Dermatology, 2022, 55(9): 790-794. |
[3] | Zhou Xue, Yu Zengyang, Chen Youdong, Guo Chunyuan, Yu Qian, Hu Yifan, Yao Lingling, Shi Yuling, . Tumor necrosis factor α-mediated low expression of fatty acid desaturase 2 in psoriasis [J]. Chinese Journal of Dermatology, 2022, 55(9): 752-758. |
[4] | Yao Lingling, Yu Zengyang, Guo Chunyuan, Zhou Jing, Cui Lian, Yu Qian, Yu Yingyuan, Zhou Xue, Cai Jiangluyi, Shi Yuling, . Changes in circadian gene cryptochrome 2 expression in mouse models of psoriasis and HaCaT cells and their underlying mechanisms [J]. Chinese Journal of Dermatology, 2022, 55(9): 759-766. |
[5] | Yu Chen, Wang Gang. Small-molecule targeted agents: new choices for the treatment of psoriasis [J]. Chinese Journal of Dermatology, 2022, 55(9): 747-751. |
[6] | Sun Jie, Wang Rui, Li Chengxin. Tumor necrosis factor-α inhibitor?induced psoriasis [J]. Chinese Journal of Dermatology, 2022, 55(9): 821-824. |
[7] | Wang Lingyan, Pan Jing, Miao Gang, Chang Xiaodan, Jin Qiuzi, Guo Ningning, Zhang Jiayu. Analysis of difficult-to-treat sites in patients with psoriasis who received biological therapy [J]. Chinese Journal of Dermatology, 2022, 55(7): 583-587. |
[8] | Committee on Autoimmune Diseases, China Dermatologist Association. Cyclosporine in the treatment of immune-related skin diseases: an expert proposal [J]. Chinese Journal of Dermatology, 2022, 55(6): 471-479. |
[9] | Shan Ying, Zuo Yagang. Correlation between autoimmune bullous diseases and psoriasis [J]. Chinese Journal of Dermatology, 2022, 55(5): 452-455. |
[10] | Wang Xiaowen, Li Ruoyu. Superficial fungal infections in psoriasis patients treated with IL-17 related biological agents and their management [J]. Chinese Journal of Dermatology, 2022, 55(3): 272-275. |
[11] | Wang Yue, Yan Yulin. Analysis of adverse drug reactions and reasons for drug discontinuation during acitretin therapy in 171 patients with psoriasis vulgaris [J]. Chinese Journal of Dermatology, 2022, 55(3): 242-245. |
[12] | Li Yan, Li Ming, Xu Wei, Li Linfeng. Efficacy of fluticasone propionate cream alone or in combination with calcipotriol ointment in the treatment of mild to moderate plaque psoriasis: a randomized self-controlled study [J]. Chinese Journal of Dermatology, 2022, 55(3): 260-263. |
[13] | Wang Zhaoyang, Chen Anwei, Xiang Xin, Luo Xiaoyan, Xu Zigang, Wang Hua, Ma Lin. An investigation into the current situation of pediatric psoriasis based on the information systems from two children′s hospitals [J]. Chinese Journal of Dermatology, 2022, 55(3): 246-250. |
[14] | Writing committee expert group on “diagnosis and treatment of pustular psoriasis: a Chinese expert consensus statement”. Diagnosis and treatment of pustular psoriasis: a Chinese expert consensus statement (2022) [J]. Chinese Journal of Dermatology, 2022, 55(3): 187-195. |
[15] | Zhang Tingting, Zhu Fengyi, Yang Mei, Zhang Ping, Xia Ping, Zhou Xiaoyong. Clinical efficacy and safety of secukinumab in the treatment of 7 cases of erythrodermic psoriasis [J]. Chinese Journal of Dermatology, 2022, 0(2): 20210644-e20210644. |
|