Chinese Journal of Dermatology ›› 2022, Vol. 55 ›› Issue (9): 830-834.doi: 10.35541/cjd.20200279
• Reviews • Previous Articles Next Articles
Xiao Chunying, Wang Gang
Received:
2020-03-19
Revised:
2020-10-21
Online:
2022-09-15
Published:
2022-09-02
Contact:
Wang Gang
E-mail:xjwgang@fmmu.edu.cn
Supported by:
Xiao Chunying, Wang Gang. Roles of Langerhans cells in psoriasis[J]. Chinese Journal of Dermatology, 2022, 55(9): 830-834.doi:10.35541/cjd.20200279
[1] | West HC, Bennett CL. Redefining the role of Langerhans cells as immune regulators within the skin[J]. Front Immunol, 2017,8:1941. doi: 10.3389/fimmu.2017.01941. |
[2] | Deckers J, Hammad H, Hoste E. Langerhans cells: sensing the environment in health and disease[J]. Front Immunol, 2018,9:93. doi: 10.3389/fimmu.2018.00093. |
[3] | Atmatzidis DH, Lambert WC, Lambert MW. Langerhans cell: exciting developments in health and disease[J]. J Eur Acad Dermatol Venereol, 2017,31(11):1817⁃1824. doi: 10.1111/jdv. 14522. |
[4] | Otsuka M, Egawa G, Kabashima K. Uncovering the mysteries of langerhans cells, inflammatory dendritic epidermal cells, and monocyte⁃derived Langerhans cell⁃like cells in the epidermis[J]. Front Immunol, 2018,9:1768. doi: 10.3389/fimmu.2018.01768. |
[5] | Chorro L, Sarde A, Li M, et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation⁃associated expansion of the epidermal LC network[J]. J Exp Med, 2009,206(13):3089⁃3100. doi: 10.1084/jem. 20091586. |
[6] | Hasegawa T, Feng Z, Yan Z, et al. Reduction in human epidermal Langerhans cells with age is associated with decline in CXCL14⁃mediated recruitment of CD14+ monocytes[J]. J Invest Dermatol, 2020,140(7):1327⁃1334. doi: 10.1016/j.jid. 2019.11.017. |
[7] | Kubo A, Nagao K, Yokouchi M, et al. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers[J]. J Exp Med, 2009,206(13):2937⁃2946. doi: 10.1084/jem.20091527. |
[8] | Ogawa Y, Kinoshita M, Shimada S, et al. Zinc in keratinocytes and Langerhans cells: relevance to the epidermal homeostasis[J]. J Immunol Res, 2018,2018:5404093. doi: 10.1155/2018/5404093. |
[9] | Kaplan DH. Ontogeny and function of murine epidermal Langerhans cells[J]. Nat Immunol, 2017,18(10):1068⁃1075. doi: 10.1038/ni.3815. |
[10] | Ginhoux F, Collin MP, Bogunovic M, et al. Blood⁃derived dermal langerin+ dendritic cells survey the skin in the steady state[J]. J Exp Med, 2007,204(13):3133⁃3146. doi: 10.1084/jem.20071733. |
[11] | Sirvent S, Vallejo AF, Davies J, et al. Genomic programming of IRF4⁃expressing human Langerhans cells[J]. Nat Commun, 2020,11(1):313. doi: 10.1038/s41467⁃019⁃14125⁃x. |
[12] | Hovav AH. Mucosal and skin Langerhans cells ⁃ nurture calls[J]. Trends Immunol, 2018,39(10):788⁃800. doi: 10.1016/j.it. 2018.08.007. |
[13] | Wu X, Briseño CG, Durai V, et al. Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells[J]. J Exp Med, 2016,213(12):2553⁃2565. doi: 10.1084/jem.20160600. |
[14] | Satpathy AT, Brown RA, Gomulia E, et al. Expression of the transcription factor ZBTB46 distinguishes human histiocytic disorders of classical dendritic cell origin[J]. Mod Pathol, 2018,31(9):1479⁃1486. doi: 10.1038/s41379⁃018⁃0052⁃4. |
[15] | Ginhoux F, Tacke F, Angeli V, et al. Langerhans cells arise from monocytes in vivo[J]. Nat Immunol, 2006,7(3):265⁃273. doi: 10.1038/ni1307. |
[16] | Seré K, Baek JH, Ober⁃Blöbaum J, et al. Two distinct types of Langerhans cells populate the skin during steady state and inflammation[J]. Immunity, 2012,37(5):905⁃916. doi: 10.1016/j.immuni.2012.07.019. |
[17] | McCully ML, Kouzeli A, Moser B. Peripheral tissue chemokines: homeostatic control of immune surveillance T Cells[J]. Trends Immunol, 2018,39(9):734⁃747. doi: 10.1016/j.it.2018.06.003. |
[18] | Ferrer IR, West HC, Henderson S, et al. A wave of monocytes is recruited to replenish the long⁃term Langerhans cell network after immune injury[J]. Sci Immunol, 2019,4(38):eaax8704. doi: 10.1126/sciimmunol.aax8704. |
[19] | Milne P, Bigley V, Gunawan M, et al. CD1c+ blood dendritic cells have Langerhans cell potential[J]. Blood, 2015,125(3):470⁃473. doi: 10.1182/blood⁃2014⁃08⁃593582. |
[20] | Martínez⁃Cingolani C, Grandclaudon M, Jeanmougin M, et al. Human blood BDCA⁃1 dendritic cells differentiate into Langerhans⁃like cells with thymic stromal lymphopoietin and TGF⁃β[J]. Blood, 2014,124(15):2411⁃2420. doi: 10.1182/blood⁃2014⁃04⁃568311. |
[21] | Picarda G, Chéneau C, Humbert JM, et al. Functional Langerin high⁃expressing Langerhans⁃like cells can arise from CD14 high CD16⁃ human blood monocytes in serum⁃free condition[J]. J Immunol, 2016,196(9):3716⁃3728. doi: 10.4049/jimmunol.150 1304. |
[22] | Bobr A, Igyarto BZ, Haley KM, et al. Autocrine/paracrine TGF⁃β1 inhibits Langerhans cell migration[J]. Proc Natl Acad Sci U S A, 2012,109(26):10492⁃10497. doi: 10.1073/pnas.1119178109. |
[23] | Brand A, Diener N, Zahner SP, et al. E⁃Cadherin is dispensable to maintain Langerhans cells in the epidermis[J]. J Invest Dermatol, 2020,140(1):132⁃142.e3. doi: 10.1016/j.jid.2019.06. 132. |
[24] | Xiao C, Zhu Z, Sun S, et al. Activation of Langerhans cells promotes the inflammation in imiquimod⁃induced psoriasis⁃like dermatitis[J]. J Dermatol Sci, 2017,85(3):170⁃177. doi: 10. 1016/j.jdermsci.2016.12.003. |
[25] | Mohammed J, Beura LK, Bobr A, et al. Stromal cells control the epithelial residence of DC and memory T cells by regulated activation of TGF⁃β[J]. Nat Immunol, 2016,17(4):414⁃421. doi: 10.1038/ni.3396. |
[26] | Lopez MJ, Seyed⁃Razavi Y, Jamali A, et al. The chemokine receptor CXCR4 mediates recruitment of CD11c+ conventional dendritic cells into the inflamed murine cornea[J]. Invest Ophthalmol Vis Sci, 2018,59(13):5671⁃5681. doi: 10.1167/iovs. 18⁃25084. |
[27] | Russo E, Teijeira A, Vaahtomeri K, et al. Intralymphatic CCL21 promotes tissue egress of dendritic cells through afferent lymphatic vessels[J]. Cell Rep, 2016,14(7):1723⁃1734. doi: 10.1016/j.celrep.2016.01.048. |
[28] | Kissenpfennig A, Henri S, Dubois B, et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells[J]. Immunity, 2005,22(5):643⁃654. doi: 10. 1016/j.immuni.2005.04.004. |
[29] | Martini E, Wikén M, Cheuk S, et al. Dynamic changes in resident and infiltrating epidermal dendritic cells in active and resolved psoriasis[J]. J Invest Dermatol, 2017,137(4):865⁃873. doi: 10.1016/j.jid.2016.11.033. |
[30] | Shaw FL, Cumberbatch M, Kleyn CE, et al. Langerhans cell mobilization distinguishes between early⁃onset and late⁃onset psoriasis[J]. J Invest Dermatol, 2010,130(7):1940⁃1942. doi: 10.1038/jid.2010.57. |
[31] | Eaton LH, Mellody KT, Pilkington SM, et al. Impaired Langerhans cell migration in psoriasis is due to an altered keratinocyte phenotype induced by interleukin⁃17[J]. Br J Dermatol, 2018,178(6):1364⁃1372. doi: 10.1111/bjd.16172. |
[32] | Eaton LH, Dearman RJ, Kimber I, et al. Keratinocytes derived from late⁃onset⁃psoriasis skin do not impair Langerhans cell migration[J]. Br J Dermatol, 2018,179(5):1208⁃1209. doi: 10. 1111/bjd.16896. |
[33] | Shaw FL, Mellody KT, Ogden S, et al. Treatment⁃related restoration of Langerhans cell migration in psoriasis[J]. J Invest Dermatol, 2014,134(1):268⁃271. doi: 10.1038/jid.2013.289. |
[34] | Shipman WD, Chyou S, Ramanathan A, et al. A protective Langerhans cell⁃keratinocyte axis that is dysfunctional in photosensitivity[J]. Sci Transl Med, 2018,10(454):eaap9527. doi: 10.1126/ scitranslmed.aap9527. |
[35] | Raaby L, Rosada C, Langkilde A, et al. Langerhans cell markers CD1a and CD207 are the most rapidly responding genes in lesional psoriatic skin following adalimumab treatment[J]. Exp Dermatol, 2017,26(9):804⁃810. doi: 10.1111/exd.13304. |
[36] | Hawkes JE, Gudjonsson JE, Ward NL. The snowballing literature on imiquimod⁃induced skin inflammation in mice: a critical appraisal[J]. J Invest Dermatol, 2017,137(3):546⁃549. doi: 10.1016/j.jid.2016.10.024. |
[37] | Sweeney CM, Russell SE, Malara A, et al. Human ß⁃defensin 3 and its mouse ortholog murine ß⁃defensin 14 activate Langerhans cells and exacerbate psoriasis⁃like skin inflammation in mice[J]. J Invest Dermatol, 2016,136(3):723⁃727. doi: 10.1016/j.jid.2015.12.011. |
[38] | Wohn C, Ober⁃Blöbaum JL, Haak S, et al. Langerin(neg) conventional dendritic cells produce IL⁃23 to drive psoriatic plaque formation in mice[J]. Proc Natl Acad Sci U S A, 2013,110(26):10723⁃10728. doi: 10.1073/pnas.1307569110. |
[39] | Yoshiki R, Kabashima K, Honda T, et al. IL⁃23 from Langerhans cells is required for the development of imiquimod⁃induced psoriasis⁃like dermatitis by induction of IL⁃17A⁃producing γδ T cells[J]. J Invest Dermatol, 2014,134(7):1912⁃1921. doi: 10. 1038/jid.2014.98. |
[40] | Glitzner E, Korosec A, Brunner PM, et al. Specific roles for dendritic cell subsets during initiation and progression of psoriasis[J]. EMBO Mol Med, 2014,6(10):1312⁃1327. doi: 10. 15252/emmm.201404114. |
[41] | Moos S, Mohebiany AN, Waisman A, et al. Imiquimod⁃induced psoriasis in mice depends on the il⁃17 signaling of keratinocytes[J]. J Invest Dermatol, 2019,139(5):1110⁃1117. doi: 10.1016/j.jid.2019.01.006. |
[42] | Singh TP, Zhang HH, Borek I, et al. Monocyte⁃derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis⁃like inflammation[J]. Nat Commun, 2016,7:13581. doi: 10.1038/ncomms13581. |
[1] | Sun Jie, Wang Rui, Li Chengxin. Tumor necrosis factor-α inhibitor?induced psoriasis [J]. Chinese Journal of Dermatology, 2022, 55(9): 821-824. |
[2] | Liu Jin, Shen Zhengyu. Epigenetic regulation in psoriasis [J]. Chinese Journal of Dermatology, 2022, 55(9): 825-829. |
[3] | Zheng Jiayuan, Yu Bingqian, Chen Xianxia, Luo Zhicheng. Characteristics of pruritus in adult patients with psoriasis vulgaris and its effect on quality of life [J]. Chinese Journal of Dermatology, 2022, 55(9): 790-794. |
[4] | Zhou Xue, Yu Zengyang, Chen Youdong, Guo Chunyuan, Yu Qian, Hu Yifan, Yao Lingling, Shi Yuling, . Tumor necrosis factor α-mediated low expression of fatty acid desaturase 2 in psoriasis [J]. Chinese Journal of Dermatology, 2022, 55(9): 752-758. |
[5] | Yao Lingling, Yu Zengyang, Guo Chunyuan, Zhou Jing, Cui Lian, Yu Qian, Yu Yingyuan, Zhou Xue, Cai Jiangluyi, Shi Yuling, . Changes in circadian gene cryptochrome 2 expression in mouse models of psoriasis and HaCaT cells and their underlying mechanisms [J]. Chinese Journal of Dermatology, 2022, 55(9): 759-766. |
[6] | Yu Chen, Wang Gang. Small-molecule targeted agents: new choices for the treatment of psoriasis [J]. Chinese Journal of Dermatology, 2022, 55(9): 747-751. |
[7] | Wang Lingyan, Pan Jing, Miao Gang, Chang Xiaodan, Jin Qiuzi, Guo Ningning, Zhang Jiayu. Analysis of difficult-to-treat sites in patients with psoriasis who received biological therapy [J]. Chinese Journal of Dermatology, 2022, 55(7): 583-587. |
[8] | Committee on Autoimmune Diseases, China Dermatologist Association. Cyclosporine in the treatment of immune-related skin diseases: an expert proposal [J]. Chinese Journal of Dermatology, 2022, 55(6): 471-479. |
[9] | Shan Ying, Zuo Yagang. Correlation between autoimmune bullous diseases and psoriasis [J]. Chinese Journal of Dermatology, 2022, 55(5): 452-455. |
[10] | Wang Yue, Yan Yulin. Analysis of adverse drug reactions and reasons for drug discontinuation during acitretin therapy in 171 patients with psoriasis vulgaris [J]. Chinese Journal of Dermatology, 2022, 55(3): 242-245. |
[11] | Li Yan, Li Ming, Xu Wei, Li Linfeng. Efficacy of fluticasone propionate cream alone or in combination with calcipotriol ointment in the treatment of mild to moderate plaque psoriasis: a randomized self-controlled study [J]. Chinese Journal of Dermatology, 2022, 55(3): 260-263. |
[12] | Wang Xiaowen, Li Ruoyu. Superficial fungal infections in psoriasis patients treated with IL-17 related biological agents and their management [J]. Chinese Journal of Dermatology, 2022, 55(3): 272-275. |
[13] | Wang Zhaoyang, Chen Anwei, Xiang Xin, Luo Xiaoyan, Xu Zigang, Wang Hua, Ma Lin. An investigation into the current situation of pediatric psoriasis based on the information systems from two children′s hospitals [J]. Chinese Journal of Dermatology, 2022, 55(3): 246-250. |
[14] | Writing committee expert group on “diagnosis and treatment of pustular psoriasis: a Chinese expert consensus statement”. Diagnosis and treatment of pustular psoriasis: a Chinese expert consensus statement (2022) [J]. Chinese Journal of Dermatology, 2022, 55(3): 187-195. |
[15] | Zhang Tingting, Zhu Fengyi, Yang Mei, Zhang Ping, Xia Ping, Zhou Xiaoyong. Clinical efficacy and safety of secukinumab in the treatment of 7 cases of erythrodermic psoriasis [J]. Chinese Journal of Dermatology, 2022, 0(2): 20210644-e20210644. |
|