[1] |
Lee H, Hong Y, Kim M. Structural and functional changes and possible molecular mechanisms in aged skin[J]. Int J Mol Sci, 2021,22(22):12489. doi: 10.3390/ijms222212489.
|
[2] |
Franco AC, Aveleira C, Cavadas C. Skin senescence: mechanisms and impact on whole⁃body aging[J]. Trends Mol Med, 2022,28(2):97⁃109. doi: 10.1016/j.molmed.2021.12.003.
|
[3] |
Brown EM, Gamba G, Riccardi D, et al. Cloning and characterization of an extracellular Ca2+⁃sensing receptor from bovine parathyroid[J]. Nature, 1993,366(6455):575⁃580. doi: 10.1038/366575a0.
|
[4] |
Magno AL, Ward BK, Ratajczak T. The calcium⁃sensing receptor: a molecular perspective[J]. Endocr Rev, 2011,32(1):3⁃30. doi: 10.1210/er.2009⁃0043.
|
[5] |
Tu CL, Chang W, Bikle DD. The extracellular calcium⁃sensing receptor is required for calcium⁃induced differentiation in human keratinocytes[J]. J Biol Chem, 2001,276(44):41079⁃41085. doi: 10.1074/jbc.M107122200.
|
[6] |
Bollag WB. Down⁃regulated calcium⁃sensing receptor in keratinocytes and skin from aged mice and humans impairs function[J]. J Invest Dermatol, 2021,141(11):2558⁃2561. doi: 10.1016/j.jid.2021.04.005.
|
[7] |
Ray K, Hauschild BC, Steinbach PJ, et al. Identification of the cysteine residues in the amino⁃terminal extracellular domain of the human Ca2+ receptor critical for dimerization. Implications for function of monomeric Ca2+ receptor[J]. J Biol Chem, 1999,274(39):27642⁃27650. doi: 10.1074/jbc.274.39.27642.
|
[8] |
Reyes⁃Cruz G, Hu J, Goldsmith PK, et al. Human Ca2+ receptor extracellular domain. Analysis of function of lobe I loop deletion mutants[J]. J Biol Chem, 2001,276(34):32145⁃32151. doi: 10. 1074/jbc.M102977200.
|
[9] |
Huang Y, Zhou Y, Yang W, et al. Identification and dissection of Ca2+⁃binding sites in the extracellular domain of Ca2+⁃sensing receptor[J]. J Biol Chem, 2007,282(26):19000⁃19010. doi: 10. 1074/jbc.M701096200.
|
[10] |
Hjälm G, MacLeod RJ, Kifor O, et al. Filamin⁃A binds to the carboxyl⁃terminal tail of the calcium⁃sensing receptor, an interaction that participates in CaR⁃mediated activation of mitogen⁃activated protein kinase[J]. J Biol Chem, 2001,276(37):34880⁃34887. doi: 10.1074/jbc.M100784200.
|
[11] |
Sundararaman SS, van der Vorst E. Calcium⁃sensing receptor (CaSR), its impact on inflammation and the consequences on cardiovascular health[J]. Int J Mol Sci, 2021,22(5):2478. doi: 10.3390/ijms22052478.
|
[12] |
Guha S, Paul C, Alvarez S, et al. Dietary γ⁃glutamyl valine ameliorates TNF⁃α⁃induced vascular inflammation via endothelial calcium⁃sensing receptors[J]. J Agric Food Chem, 2020,68(34):9139⁃9149. doi: 10.1021/acs.jafc.0c04526.
|
[13] |
Gao S, Chen Y, Zhao J, et al. Oat β⁃glucan ameliorates epidermal barrier disruption by upregulating the expression of CaSR through dectin⁃1⁃mediated ERK and p38 signaling pathways[J]. Int J Biol Macromol, 2021,185:876⁃889. doi: 10. 1016/j.ijbiomac.2021.07.002.
|
[14] |
Celli A, Tu CL, Lee E, et al. Decreased calcium⁃sensing receptor expression controls calcium signaling and cell⁃to⁃cell adhesion defects in aged skin[J]. J Invest Dermatol, 2021,141(11):2577⁃2586. doi: 10.1016/j.jid.2021.03.025.
|
[15] |
Wang Z, Man MQ, Li T, et al. Aging⁃associated alterations in epidermal function and their clinical significance[J]. Aging (Albany NY), 2020,12(6):5551⁃5565. doi: 10.18632/aging. 102946.
|
[16] |
Cooke MS, Podmore ID, Mistry N, et al. Immunochemical detection of UV⁃induced DNA damage and repair[J]. J Immunol Methods, 2003,280(1⁃2):125⁃133. doi: 10.1016/s0022⁃1759(03)00269⁃2.
|
[17] |
Lee H, Park E. Perilla frutescens extracts enhance DNA repair response in UVB damaged HaCaT cells[J]. Nutrients, 2021,13(4):1263. doi: 10.3390/nu13041263.
|
[18] |
Bikle DD, Jiang Y, Nguyen T, et al. Disruption of vitamin D and calcium signaling in keratinocytes predisposes to skin cancer[J]. Front Physiol, 2016,7:296. doi: 10.3389/fphys.2016.00296.
|
[19] |
Yang C, Rybchyn MS, De Silva W, et al. UV⁃induced DNA damage in skin is reduced by CaSR inhibition[J]. Photochem Photobiol, 2022,98(5):1157⁃1166. doi: 10.1111/php.13615.
|
[20] |
Bikle DD. Role of vitamin D and calcium signaling in epidermal wound healing[J]. J Endocrinol Invest, 2023,46(2):205⁃212. doi: 10.1007/s40618⁃022⁃01893⁃5.
|
[21] |
Ismailova A, White JH. Vitamin D, infections and immunity[J]. Rev Endocr Metab Disord, 2022,23(2):265⁃277. doi: 10.1007/s11154⁃021⁃09679⁃5.
|
[22] |
Sharan K, Siddiqui JA, Swarnkar G, et al. Role of calcium⁃sensing receptor in bone biology[J]. Indian J Med Res, 2008,127(3):274⁃286.
|
[23] |
Cubillos S, Norgauer J. Low vitamin D⁃modulated calcium⁃regulating proteins in psoriasis vulgaris plaques: S100A7 overexpression depends on joint involvement[J]. Int J Mol Med, 2016,38(4):1083⁃1092. doi: 10.3892/ijmm.2016.2718.
|
[24] |
Ahmed MB, Islam SU, Lee YS. PRP4 promotes skin cancer by inhibiting production of melanin, blocking influx of extracellular calcium, and remodeling cell actin cytoskeleton[J]. Int J Mol Sci, 2021,22(13):6992. doi: 10.3390/ijms22136992.
|
[25] |
Mary A, Hénaut L, Boudot C, et al. Calcitriol prevents in vitro vascular smooth muscle cell mineralization by regulating calcium⁃sensing receptor expression[J]. Endocrinology, 2015,156(6):1965⁃1974. doi: 10.1210/en.2014⁃1744.
|
[26] |
Leach K, Hannan FM, Josephs TM, et al. International union of basic and clinical pharmacology. CVIII. calcium⁃sensing receptor nomenclature, pharmacology, and function[J]. Pharmacol Rev, 2020,72(3):558⁃604. doi: 10.1124/pr.119.018531.
|
[27] |
Chen X, Wang L, Cui Q, et al. Structural insights into the activation of human calcium⁃sensing receptor[J]. Elife, 2021,10:e68578. doi: 10.7554/eLife.68578.
|