中华皮肤科杂志 ›› 2025, e20240192.doi: 10.35541/cjd.20240192
叶慧 邓仕琳 梁景耀 张锡宝
收稿日期:
2024-04-11
修回日期:
2024-08-08
发布日期:
2025-02-08
通讯作者:
张锡宝
E-mail:zxibao@126.com
Ye Hui, Deng Shilin, Liang Jingyao, Zhang Xibao
Received:
2024-04-11
Revised:
2024-08-08
Published:
2025-02-08
Contact:
Zhang Xibao
E-mail:zxibao@126.com
摘要: 【摘要】 组织驻留记忆性T细胞在特应性皮炎复发控制中起重要作用,但具体机制尚不明确。深入研究组织驻留记忆性T细胞的生物学功能,有望实现特应性皮炎精准个体化治疗和长期有效控制。本文综述组织驻留记忆性T细胞在皮肤组织中的生物学特性及其在特应性皮炎复发控制中的作用。
叶慧 邓仕琳 梁景耀 张锡宝. 特应性皮炎复发控制与组织驻留记忆性T细胞的相关性研究进展[J]. 中华皮肤科杂志, 2025,e20240192. doi:10.35541/cjd.20240192
Ye Hui, Deng Shilin, Liang Jingyao, Zhang Xibao. Correlations between the control of atopic dermatitis recurrence and tissue-resident memory T cells[J]. Chinese Journal of Dermatology,2025,e20240192. doi:10.35541/cjd.20240192
[1] | 中华医学会皮肤性病学分会免疫学组, 特应性皮炎协作研究中心. 中国特应性皮炎诊疗指南(2020版)[J]. 中华皮肤科杂志, 2020,53(2):81⁃88. doi: 10.35541/cjd.20191000. |
[2] | 中华医学会皮肤性病学分会免疫学组. 特应性皮炎的全程管理共识[J]. 中华皮肤科杂志, 2023,56(1):5⁃15. doi: 10.35541/cjd.20220618. |
[3] | Li L, Liu P, Chen C, et al. Advancements in the characterization of tissue resident memory T cells in skin disease[J]. Clin Immunol, 2022,245:109183. doi: 10.1016/j.clim.2022.109183. |
[4] | Zheng C, Cao T, Ye C, et al. Neutrophil recruitment by CD4 tissue⁃resident memory T cells induces chronic recurrent inflammation in atopic dermatitis[J]. Clin Immunol, 2023,256:109805. doi: 10.1016/j.clim.2023.109805. |
[5] | Pritzl CJ, Daniels MA, Teixeiro E. Interplay of inflammatory, antigen and tissue⁃derived signals in the development of resident CD8 memory T cells[J]. Front Immunol, 2021,12:636240. doi: 10.3389/fimmu.2021.636240. |
[6] | Strobl J, Haniffa M. Functional heterogeneity of human skin⁃resident memory T cells in health and disease[J]. Immunol Rev, 2023,316(1):104⁃119. doi: 10.1111/imr.13213. |
[7] | Emmanuel T, Mistegård J, Bregnhøj A, et al. Tissue⁃resident memory T cells in skin diseases: a systematic review[J]. Int J Mol Sci, 2021,22(16):9004. doi: 10.3390/ijms22169004. |
[8] | Matos TR, Gehad A, Teague JE, et al. Central memory T cells are the most effective precursors of resident memory T cells in human skin[J]. Sci Immunol, 2022,7(70):eabn1889. doi: 10. 1126/sciimmunol.abn1889. |
[9] | Miron M, Meng W, Rosenfeld AM, et al. Maintenance of the human memory T cell repertoire by subset and tissue site[J]. Genome Med, 2021,13(1):100. doi: 10.1186/s13073⁃021⁃00 918⁃7. |
[10] | Fonseca R, Beura LK, Quarnstrom CF, et al. Developmental plasticity allows outside⁃in immune responses by resident memory T cells[J]. Nat Immunol, 2020,21(4):412⁃421. doi: 10. 1038/s41590⁃020⁃0607⁃7. |
[11] | Liu G, Wang Z, Li S. Heterogeneity and plasticity of tissue⁃resident memory T cells in skin diseases and homeostasis: a review[J]. Front Immunol, 2024,15:1378359. doi: 10.3389/fimmu. 2024.1378359. |
[12] | McCully ML, Ladell K, Andrews R, et al. CCR8 expression defines tissue⁃resident memory T cells in human skin[J]. J Immunol, 2018,200(5):1639⁃1650. doi: 10.4049/jimmunol. 1701377. |
[13] | Evrard M, Becht E, Fonseca R, et al. Single⁃cell protein expression profiling resolves circulating and resident memory T cell diversity across tissues and infection contexts[J]. Immunity, 2023,56(7):1664⁃1680.e9. doi: 10.1016/j.immuni.2023.06.005. |
[14] | Purwar R, Campbell J, Murphy G, et al. Resident memory T cells (TRM) are abundant in human lung: diversity, function, and antigen specificity[J/OL]. PLoS One, 2011,6(1):e16245. doi: 10. 1371/journal.pone.0016245. |
[15] | Khalil S, Bardawil T, Kurban M, et al. Tissue⁃resident memory T cells in the skin[J]. Inflamm Res, 2020,69(3):245⁃254. doi: 10. 1007/s00011⁃020⁃01320⁃6. |
[16] | Wienke J, Veldkamp SR, Struijf EM, et al. T cell interaction with activated endothelial cells primes for tissue⁃residency[J]. Front Immunol, 2022,13:827786. doi: 10.3389/fimmu.2022.827786. |
[17] | Kurihara K, Fujiyama T, Tokura Y, et al. Possible involvement of interleukin⁃22⁃producing CD103(+) CD8(+) T cells in the epidermal hyperplasia of atopic dermatitis[J]. J Dermatol, 2022,49(7):746⁃748. doi: 10.1111/1346⁃8138.16382. |
[18] | Marchesini Tovar G, Gallen C, Bergsbaken T. CD8+ tissue⁃resident memory T cells: versatile guardians of the tissue[J]. J Immunol, 2024,212(3):361⁃368. doi: 10.4049/jimmunol.230 0399. |
[19] | Harrison OJ, Linehan JL, Shih HY, et al. Commensal⁃specific T cell plasticity promotes rapid tissue adaptation to injury[J]. Science, 2019,363(6422):eaat6280. doi: 10.1126/science.aat 6280. |
[20] | Ogongo P, Tezera LB, Ardain A, et al. Tissue⁃resident⁃like CD4+ T cells secreting IL⁃17 control Mycobacterium tuberculosis in the human lung[J]. J Clin Invest, 2021,131(10):e142014. doi: 10.1172/JCI142014. |
[21] | Reina⁃Campos M, Heeg M, Kennewick K, et al. Metabolic programs of T cell tissue residency empower tumour immunity[J]. Nature, 2023,621(7977):179⁃187. doi: 10.1038/s41586⁃023⁃06483⁃w. |
[22] | Li C, Zhu B, Son YM, et al. The Transcription factor Bhlhe40 programs mitochondrial regulation of resident CD8(+) T cell fitness and functionality[J]. Immunity, 2020,52(1):201⁃202. doi: 10.1016/j.immuni.2019.12.008. |
[23] | Sans⁃De San Nicolàs L, Figueras⁃Nart I, Bonfill⁃Ortí M, et al. SEB⁃induced IL⁃13 production in CLA(+) memory T cells defines Th2 high and Th2 low responders in atopic dermatitis[J]. Allergy, 2022,77(11):3448⁃3451. doi: 10.1111/all.15424. |
[24] | Lin R, Zhang H, Yuan Y, et al. Fatty acid oxidation controls CD8(+) tissue⁃resident memory T⁃cell survival in gastric adenocarcinoma[J]. Cancer Immunol Res, 2020,8(4):479⁃492. doi: 10.1158/2326⁃6066.CIR⁃19⁃0702. |
[25] | Pan Y, Kupper TS. Metabolic reprogramming and longevity of tissue⁃resident memory T cells[J]. Front Immunol, 2018,9:1347. doi: 10.3389/fimmu.2018.01347. |
[26] | Bromley SK, Akbaba H, Mani V, et al. CD49a regulates cutaneous resident memory CD8(+) T cell persistence and response[J]. Cell Rep, 2020,32(9):108085. doi: 10.1016/j.celrep.2020.108085. |
[27] | Yang XX, Yang C, Wang L, et al. Molecular mechanism of sphingosine⁃1⁃phosphate receptor 1 regulating CD4(+) tissue memory in situ T cells in primary Sjogren's syndrome[J]. Int J Gen Med, 2021,14:6177⁃6188. doi: 10.2147/IJGM.S327304. |
[28] | Jung J, Lee JS, Kim YG, et al. Synovial fluid CD69(+)CD8(+) T cells with tissue⁃resident phenotype mediate perforin⁃dependent citrullination in rheumatoid arthritis[J]. Clin Transl Immunology, 2020,9(6):e1140. doi: 10.1002/cti2.1140. |
[29] | Mackay CR. CXCR3⁺CCR5⁺ T cells and autoimmune diseases: guilty as charged?[J]. J Clin Invest, 2014,124(9):3682⁃3684. doi: 10.1172/JCI77837. |
[30] | Vimonpatranon S, Goes LR, Chan A, et al. MAdCAM⁃1 costimulation in the presence of retinoic acid and TGF⁃β promotes HIV infection and differentiation of CD4+ T cells into CCR5+ TRM⁃like cells[J/OL]. PLoS Pathog, 2023,19(3):e1011209. doi: 10.1371/journal.ppat.1011209. |
[31] | Ferreira C, Barros L, Baptista M, et al. Type 1 T(reg) cells promote the generation of CD8(+) tissue⁃resident memory T cells[J]. Nat Immunol, 2020,21(7):766⁃776. doi: 10.1038/s41590⁃020⁃0674⁃9. |
[32] | Sans⁃De San Nicolàs L, Figueras⁃Nart I, Bonfill⁃Ortí M, et al. SEB⁃induced IL⁃13 production in CLA(+) memory T cells defines Th2 high and Th2 low responders in atopic dermatitis[J]. Allergy, 2022,77(11):3448⁃3451. doi: 10.1111/all.15424. |
[33] | He H, Suryawanshi H, Morozov P, et al. Single⁃cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis[J]. J Allergy Clin Immunol, 2020,145(6):1615⁃1628. doi: 10.1016/j.jaci.2020.01.042. |
[34] | Brunner PM, Emerson RO, Tipton C, et al. Nonlesional atopic dermatitis skin shares similar T⁃cell clones with lesional tissues[J]. Allergy, 2017,72(12):2017⁃2025. doi: 10.1111/all.13223. |
[35] | Beck LA, Bieber T, Weidinger S, et al. Tralokinumab treatment improves the skin microbiota by increasing the microbial diversity in adults with moderate⁃to⁃severe atopic dermatitis: Analysis of microbial diversity in ECZTRA 1, a randomized controlled trial[J]. J Am Acad Dermatol, 2023,88(4):816⁃823. doi: 10.1016/j.jaad.2022.11.047. |
[36] | Park CO, Fu X, Jiang X, et al. Staged development of long⁃lived T⁃cell receptor αβ T(H)17 resident memory T⁃cell population to Candida albicans after skin infection[J]. J Allergy Clin Immunol, 2018,142(2):647⁃662. doi: 10.1016/j.jaci.2017.09.042. |
[37] | Rauer L, Reiger M, Bhattacharyya M, et al. Skin microbiome and its association with host cofactors in determining atopic dermatitis severity[J]. J Eur Acad Dermatol Venereol, 2023,37(4):772⁃782. doi: 10.1111/jdv.18776. |
[38] | Lee SH, Kang B, Kamenyeva O, et al. Dermis resident macrophages orchestrate localized ILC2 eosinophil circuitries to promote non⁃healing cutaneous leishmaniasis[J]. Nat Commun, 2023,14(1):7852. doi: 10.1038/s41467⁃023⁃43588⁃2. |
[39] | Osinka K, Dumycz K, Kwiek B, et al. Novel therapeutic approaches to atopic dermatitis[J]. Arch Immunol Ther Exp (Warsz), 2018,66(3):171⁃181. doi: 10.1007/s00005⁃017⁃04 87⁃1. |
[40] | Czarnowicki T, Kim HJ, Villani AP, et al. High⁃dimensional analysis defines multicytokine T⁃cell subsets and supports a role for IL⁃21 in atopic dermatitis[J]. Allergy, 2021,76(10):3080⁃3093. doi: 10.1111/all.14845. |
[41] | Karlen H, Yousefi S, Simon HU, et al. IL⁃15 expression pattern in atopic dermatitis[J]. Int Arch Allergy Immunol, 2020,181(6):417⁃421. doi: 10.1159/000508515. |
[42] | Tieu R, Zeng Q, Zhao D, et al. Tissue⁃resident memory T cell maintenance during antigen persistence requires both cognate antigen and interleukin⁃15[J]. Sci Immunol, 2023,8(82):eadd 8454. doi: 10.1126/sciimmunol.add8454. |
[43] | Ren HM, Kolawole EM, Ren M, et al. IL⁃21 from high⁃affinity CD4 T cells drives differentiation of brain⁃resident CD8 T cells during persistent viral infection[J]. Sci Immunol, 2020,5(51):eabb5590. doi: 10.1126/sciimmunol.abb5590. |
[44] | Jafari AJ, Rivera M, Hebert AA. The role of thymic stromal lymphopoietin in cutaneous disorders[J]. Arch Dermatol Res, 2024,316(5):123. doi: 10.1007/s00403⁃024⁃02866⁃9. |
[45] | Gimenez⁃Rivera VA, Patel H, Dupuy FP, et al. NOD2 agonism counter⁃regulates human type 2 T cell functions in peripheral blood mononuclear cell cultures: implications for atopic dermatitis[J]. Biomolecules, 2023,13(2):369. doi: 10.3390/biom13020369. |
[46] | Park CO, Kupper TS. The emerging role of resident memory T cells in protective immunity and inflammatory disease[J]. Nat Med, 2015,21(7):688⁃697. doi: 10.1038/nm.3883. |
[47] | Zhang H, Watanabe R, Berry GJ, et al. Inhibition of JAK⁃STAT signaling suppresses pathogenic immune responses in medium and large vessel vasculitis[J]. Circulation, 2018,137(18):1934⁃1948. doi: 10.1161/CIRCULATIONAHA.117.030423. |
[48] | Matos TR, O'Malley JT, Lowry EL, et al. Clinically resolved psoriatic lesions contain psoriasis⁃specific IL⁃17⁃producing αβ T cell clones[J]. J Clin Invest, 2017,127(11):4031⁃4041. doi: 10.1172/JCI93396. |
[49] | Bangert C, Rindler K, Krausgruber T, et al. Persistence of mature dendritic cells, TH2A, and Tc2 cells characterize clinically resolved atopic dermatitis under IL⁃4Rα blockade[J]. Sci Immunol, 2021,6(55):eabe2749. doi: 10.1126/sciimmunol.abe2749. |
[50] | Liu Y, Wang H, Taylor M, et al. Classification of human chronic inflammatory skin disease based on single⁃cell immune profiling[J]. Sci Immunol, 2022,7(70):eabl9165. doi: 10.1126/sciimmunol.abl9165. |
[1] | 袁勇勇 潘萌. 家族性慢性良性天疱疮研究进展[J]. 中华皮肤科杂志, 2025, 0(3): 20240182-e20240182. |
[2] | 李翔倩 张建中 周城. 系统小分子药物和生物制剂治疗斑秃的临床研究进展[J]. 中华皮肤科杂志, 2025, 0(3): 20240247-e20240247. |
[3] | 王文秋 李承新 王睿. 生物制剂治疗银屑病复发的研究现状[J]. 中华皮肤科杂志, 2025, 0(3): 20230301-e20230301. |
[4] | 李明 李妍 李邻峰. Janus激酶抑制剂在中重度特应性皮炎中的应用进展[J]. 中华皮肤科杂志, 2025, 0(3): 20220342-e0220342. |
[5] | 许焯红 胡煜 顾恒. 间充质干细胞来源的外泌体在皮肤病中的作用[J]. 中华皮肤科杂志, 2025, 0(3): 20220881-e20220881. |
[6] | 中国医学装备协会皮肤病与皮肤美容分会. 皮肤病靶向治疗专家共识(2025版) [J]. 中华皮肤科杂志, 2025, 58(2): 99-125. |
[7] | 李美荣 唐旭华 吴榕 刘文韬 冯佩英. 国内少见的双间新柱顶孢致皮肤感染4例[J]. 中华皮肤科杂志, 2025, 0(2): 20230579-e20230579. |
[8] | 李安琪 孙秋宁. 脑源性神经营养因子与皮肤病[J]. 中华皮肤科杂志, 2025, 58(2): 190-193. |
[9] | 郭伟楠 王俊霞 陈慧 郝军峰 李冰 卫静宜 赵涛. 自体脂肪干细胞胶填充治疗凹陷性痤疮瘢痕疗效观察[J]. 中华皮肤科杂志, 2025, 58(2): 167-169. |
[10] | 刘雅妮 赵倩 刘源 张俊艳 王惠平. 特应性皮炎控制工具评估病情控制情况的有效性验证[J]. 中华皮肤科杂志, 2025, 58(2): 154-160. |
[11] | 中国康复医学会皮肤病康复专业委员会 中国中西医结合学会皮肤性病专业委员会老年皮肤病学组. [开放获取] 老年皮肤瘙痒症诊疗与康复专家共识(2025版)[J]. 中华皮肤科杂志, 2025, 58(1): 1-8. |
[12] | 中国康复医学会皮肤病康复专业委员会 中国康复医学会光动力治疗与康复专业委员会 中华医学会皮肤性病学分会光动力治疗协作组. [开放获取] 氨基酮戊酸光动力疗法治疗非黑色素瘤皮肤癌临床应用专家共识(2025版)[J]. 中华皮肤科杂志, 2025, 58(1): 9-19. |
[13] | 廖彩荷 王佩茹 吴明顺 孙晓飞 张国龙 王秀丽. 联合氨基酮戊酸光动力疗法治疗老年颜面部基底细胞癌的疗效及安全性回顾分析[J]. 中华皮肤科杂志, 2025, 58(1): 34-39. |
[14] | 金兰 邱云 王唯嘉 康晓静 丁媛. [开放获取] 生物制剂治疗老年中重度银屑病124例的临床疗效和安全性回顾分析[J]. 中华皮肤科杂志, 2025, 58(1): 47-52. |
[15] | 王博 郑捷. 老年银屑病和特应性皮炎患者生物制剂及小分子药物治疗中应注意的问题[J]. 中华皮肤科杂志, 2025, 58(1): 72-75. |
|