中华皮肤科杂志 ›› 2025, Vol. 58 ›› Issue (9): 868-872.doi: 10.35541/cjd.20250078
姜子琪1 钟菊丹1 陈廷巧2 陈瑾1
收稿日期:
2025-02-18
修回日期:
2025-08-07
发布日期:
2025-09-01
通讯作者:
陈瑾
E-mail:chenjin7791@163.com
基金资助:
Jiang Ziqi1, Zhong Judan1, Chen Tingqiao2, Chen Jin1
Received:
2025-02-18
Revised:
2025-08-07
Published:
2025-09-01
Contact:
Chen Jin
E-mail:chenjin7791@163.com
Supported by:
摘要: 【摘要】 黄褐斑的发病机制复杂,除涉及黑素细胞功能异常外,其微环境中角质形成细胞、成纤维细胞、血管内皮细胞、肥大细胞、皮脂腺细胞等交互作用的失衡也与疾病进展密切相关。本文综述黄褐斑发病机制中涉及黑素细胞及其微环境的相关研究与治疗进展。
姜子琪 钟菊丹 陈廷巧 陈瑾. 黄褐斑发病机制及治疗研究进展[J]. 中华皮肤科杂志, 2025,58(9):868-872. doi:10.35541/cjd.20250078
Jiang Ziqi, Zhong Judan, Chen Tingqiao, Chen Jin. Pathogenesis and treatment of melasma[J]. Chinese Journal of Dermatology, 2025, 58(9): 868-872.doi:10.35541/cjd.20250078
[1] | Gu D, Pan R, Meng X, et al. What lies behind melasma: a review of the related skin microenvironment[J]. Int J Dermatol, 2025,64(2):256⁃265. doi: 10.1111/ijd.17453. |
[2] | Guida S, Longo C, Ronga R, et al. Melasma and reflectance confocal microscopy: from baseline to treatment monitoring[J]. Int J Dermatol, 2024,63(8):1007⁃1012. doi: 10.1111/ijd.17117. |
[3] | Hafeez F, Mata DA, Lian CG, et al. Prominent transepidermal melanin deposition is a distinguishing histopathological feature of melasma: a clinicopathologic study[J]. Dermatology, 2021,237(1):145⁃147. doi: 10.1159/000504408. |
[4] | Gautam M, Patil S, Nadkarni N, et al. Histopathological comparison of lesional and perilesional skin in melasma: a cross⁃sectional analysis[J]. Indian J Dermatol Venereol Leprol, 2019,85(4):367⁃373. doi: 10.4103/ijdvl.IJDVL_866_17. |
[5] | Chen IL, Wang YJ, Chang CC, et al. Computer⁃aided detection (CADe) system with optical coherent tomography for melanin morphology quantification in melasma patients[J]. Diagnostics (Basel), 2021,11(8)doi: 10.3390/diagnostics11081498. |
[6] | Wang YJ, Chang CC, Wu YH, et al. Adaptability of melanocytes post ultraviolet stimulation in patients with melasma[J]. Lasers Surg Med, 2023,55(7):680⁃689. doi: 10.1002/lsm.23699. |
[7] | Böhm M, Robert C, Malhotra S, et al. An overview of benefits and risks of chronic melanocortin⁃1 receptor activation[J]. J Eur Acad Dermatol Venereol, 2025,39(1):39⁃51. doi: 10.1111/jdv. 20269. |
[8] | Luo L, Zeng H, Hu Y, et al. The amino acid transporter SLC16A10 promotes melanogenesis by facilitating the transportation of phenylalanine[J]. Exp Dermatol, 2024,33(8):e15165. doi: 10.1111/exd.15165. |
[9] | Espósito A, de Souza NP, Miot L, et al. Deficit in autophagy: a possible mechanism involved in melanocyte hyperfunction in melasma[J]. Indian J Dermatol Venereol Leprol, 2021:1⁃3. doi: 10.25259/IJDVL_927_20. |
[10] | Hakozaki T, Wang J, Laughlin T, et al. Role of interleukin⁃6 and endothelin⁃1 receptors in enhanced melanocyte dendricity of facial spots and suppression of their ligands by niacinamide and tranexamic acid[J]. J Eur Acad Dermatol Venereol, 2024,38 Suppl 2:3⁃10. doi: 10.1111/jdv.19719. |
[11] | Bento⁃Lopes L, Cabaço LC, Charneca J, et al. Melanin's journey from melanocytes to keratinocytes: uncovering the molecular mechanisms of melanin transfer and processing[J]. Int J Mol Sci, 2023,24(14). doi: 10.3390/ijms241411289. |
[12] | Guo MS, Wu Q, Dong TT, et al. The UV⁃induced uptake of melanosome by skin keratinocyte is triggered by α7 nicotinic acetylcholine receptor⁃mediated phagocytosis[J]. FEBS J, 2023,290(3):724⁃744. doi: 10.1111/febs.16613. |
[13] | Murase D, Kusaka⁃Kikushima A, Hachiya A, et al. Autophagy declines with premature skin aging resulting in dynamic alterations in skin pigmentation and epidermal differentiation[J]. Int J Mol Sci, 2020,21(16):5708. doi: 10.3390/ijms211 65708. |
[14] | Kim JY, Kim J, Ahn Y, et al. Autophagy induction can regulate skin pigmentation by causing melanosome degradation in keratinocytes and melanocytes[J]. Pigment Cell Melanoma Res, 2020,33(3):403⁃415. doi: 10.1111/pcmr.12838. |
[15] | Lee KW, Ryu KJ, Kim M, et al. RCHY1 and OPTN are required for melanophagy, selective autophagy of melanosomes[J]. Proc Natl Acad Sci U S A, 2024,121(14):e2318039121. doi: 10.1073/pnas.2318039121. |
[16] | da Silva CN, Miot HA, Grassi TF, et al. Expression of endothelin⁃1, endothelin receptor⁃A, and endothelin receptor⁃B in facial melasma compared to adjacent skin[J]. Clin Cosmet Investig Dermatol, 2023,16:2847⁃2853. doi: 10.2147/CCID.S402168. |
[17] | Cui YZ, Xu F, Zhou Y, et al. SPRY1 deficiency in keratinocytes induces follicular melanocyte stem cell migration to the epidermis through p53/stem cell factor/C⁃KIT signaling[J]. J Invest Dermatol, 2024,144(10):2255⁃2266.e4. doi: 10.1016/j.jid.2024.02.018. |
[18] | Shi HX, Zhang RZ, Xiao L, et al. Effects of keratinocyte⁃derived and fibroblast⁃derived exosomes on human epidermal melanocytes[J]. Indian J Dermatol Venereol Leprol, 2022,88(3):322⁃331. doi: 10.25259/IJDVL_1087_19. |
[19] | Fu C, Chen J, Lu J, et al. Roles of inflammation factors in melanogenesis (Review)[J]. Mol Med Rep, 2020,21(3):1421⁃1430. doi: 10.3892/mmr.2020.10950. |
[20] | Kim NH, Lee AY. Oxidative stress induces skin pigmentation in melasma by inhibiting hedgehog signaling[J]. Antioxidants (Basel), 2023,12(11). doi: 10.3390/antiox12111969. |
[21] | Fang J, Ouyang M, Qu Y, et al. Advanced glycation end products promote melanogenesis by activating NLRP3 inflammasome in human dermal fibroblasts[J]. J Invest Dermatol, 2022,142(10):2591⁃2602.e8. doi: 10.1016/j.jid.2022.03.025. |
[22] | Espósito A, Brianezi G, Miot L, et al. Fibroblast morphology, growth rate and gene expression in facial melasma[J]. An Bras Dermatol, 2022,97(5):575⁃582. doi: 10.1016/j.abd.2021.09.012. |
[23] | Kim Y, Kang B, Kim JC, et al. Senescent fibroblast⁃derived GDF15 induces skin pigmentation[J]. J Invest Dermatol, 2020,140(12):2478⁃2486.e4. doi: 10.1016/j.jid.2020.04.016. |
[24] | Kapoor R, Dhatwalia SK, Kumar R, et al. Emerging role of dermal compartment in skin pigmentation: comprehensive review[J]. J Eur Acad Dermatol Venereol, 2020,34(12):2757⁃2765. doi: 10.1111/jdv.16404. |
[25] | Bellei B, Picardo M. Premature cell senescence in human skin: dual face in chronic acquired pigmentary disorders[J]. Ageing Res Rev, 2020,57:100981. doi: 10.1016/j.arr.2019.100981. |
[26] | Wang Z, Chen Y, Pan S, et al. Quantitative classification of melasma with photoacoustic microscopy: a pilot study[J]. J Biomed Opt, 2024,29(Suppl 1):S11504. doi: 10.1117/1.JBO.29.S1.S11504. |
[27] | Pomerantz H, Christman MP, Bloom BS, et al. Dynamic optical coherence tomography of cutaneous blood vessels in melasma and vessel response to oral tranexamic acid[J]. Lasers Surg Med, 2021,53(6):861⁃864. doi: 10.1002/lsm.23345. |
[28] | Hara Y, Shibata T. Characteristics of dermal vascularity in melasma and solar lentigo[J]. Photodermatol Photoimmunol Photomed, 2024,40(2):e12953. doi: 10.1111/phpp.12953. |
[29] | Chang CC, Wang YJ, Huang L, et al. Photoaging features of melasma: an in vivo layered and quantitative analysis using computer⁃aided detection of cellular resolution full⁃field optical coherence tomography[J]. J Eur Acad Dermatol Venereol, 2024,38(10):e870⁃e873. doi: 10.1111/jdv.19971. |
[30] | Phansuk K, Vachiramon V, Jurairattanaporn N, et al. Dermal pathology in melasma: an update review[J]. Clin Cosmet Investig Dermatol, 2022,15:11⁃19. doi: 10.2147/CCID.S343332. |
[31] | Espósito A, Brianezi G, de Souza NP, et al. Exploratory study of epidermis, basement membrane zone, upper dermis alterations and wnt pathway activation in melasma compared to adjacent and retroauricular skin[J]. Ann Dermatol, 2020,32(2):101⁃108. doi: 10.5021/ad.2020.32.2.101. |
[32] | Clayton RW, Langan EA, Ansell DM, et al. Neuroendocrinology and neurobiology of sebaceous glands[J]. Biol Rev Camb Philos Soc, 2020,95(3):592⁃624. doi: 10.1111/brv.12579. |
[33] | Flori E, Mastrofrancesco A, Mosca S, et al. Sebocytes contribute to melasma onset[J]. iScience, 2022,25(3):103871. doi: 10. 1016/j.isci.2022.103871. |
[34] | Liu LX, Liao ZK, Dong BQ, et al. Tranexamic acid ameliorates skin hyperpigmentation by downregulating endothelin⁃1 expression in dermal microvascular endothelial cells[J]. Ann Dermatol, 2024,36(3):151⁃162. doi: 10.5021/ad.23.108. |
[35] | Zhu JW, Ni YJ, Tong XY, et al. Tranexamic acid inhibits angiogenesis and melanogenesis in vitro by targeting VEGF receptors[J]. Int J Med Sci, 2020,17(7):903⁃911. doi: 10.7150/ijms.44188. |
[36] | Konisky H, Balazic E, Jaller JA, et al. Tranexamic acid in melasma: a focused review on drug administration routes[J]. J Cosmet Dermatol, 2023,22(4):1197⁃1206. doi: 10.1111/jocd. 15589. |
[37] | Poostiyan N, Alizadeh M, Shahmoradi Z, et al. Tranexamic acid microinjections versus tranexamic acid mesoneedling in the treatment of facial melasma: a randomized assessor⁃blind split⁃face controlled trial[J]. J Cosmet Dermatol, 2023,22(4):1238⁃1244. doi: 10.1111/jocd.15580. |
[38] | Jia Z, Tian K, Zhong Y, et al. Effectiveness of combination therapy of broadband light and intradermal injection of tranexamic acid in the treatment of chloasma[J]. J Cosmet Dermatol, 2023,22(5):1536⁃1544. doi: 10.1111/jocd.15632. |
[39] | Bertold C, Fontas E, Singh T, et al. Efficacy and safety of a novel triple combination cream compared to Kligman's trio for melasma: a 24⁃week double⁃blind prospective randomized controlled trial[J]. J Eur Acad Dermatol Venereol, 2023,37(12):2601⁃2607. doi: 10.1111/jdv.19455. |
[40] | Vladulescu D, Scurtu LG, Simionescu AA, et al. Platelet⁃rich plasma (PRP) in dermatology: cellular and molecular mechanisms of action[J]. Biomedicines, 2023,12(1):7. doi: 10.3390/biomedicines12010007. |
[41] | Manole CG, Soare C, Ceafalan LC, et al. Platelet⁃rich plasma in dermatology: new insights on the cellular mechanism of skin repair and regeneration[J]. Life (Basel), 2023,14(1). doi: 10.3390/life14010040. |
[42] | Abd Elraouf IG, Obaid ZM, Fouda I. Intradermal injection of tranexamic acid versus platelet⁃rich plasma in the treatment of melasma: a split⁃face comparative study[J]. Arch Dermatol Res, 2023,315(6):1763⁃1770. doi: 10.1007/s00403⁃023⁃02580⁃y. |
[43] | Simin H, Siliang X, Wei C, et al. Efficacy of microneedle as an assisted therapy for melasma: a meta⁃analysis and systematic review of randomized controlled trials[J]. Aesthetic Plast Surg, 2025,49(6):1755⁃1769. doi: 10.1007/s00266⁃024⁃04395⁃2. |
[44] | Hofny ER, Abdel⁃Motaleb AA, Hamed SA, et al. Trichloroacetic acid with microneedling versus trichloroacetic acid alone for treating melasma[J]. Dermatol Surg, 2023,49(1):66⁃71. doi: 10.1097/DSS.0000000000003641. |
[45] | Ramírez⁃Oliveros JF, de Abreu L, Tamler C, et al. Microneedling with drug delivery (hydroquinone 4% serum) as an adjuvant therapy for recalcitrant melasma[J]. Skinmed, 2020,18(1):38⁃40. |
[46] | Bhattacharjee R, Hanumanthu V, Thakur V, et al. A randomized, open⁃label study to compare two different dosing regimens of oral tranexamic acid in treatment of moderate to severe facial melasma[J]. Arch Dermatol Res, 2023,315(6):1831⁃1836. doi: 10.1007/s00403⁃023⁃02549⁃x. |
[47] | Polat Y, Saraç G. Comparison of clinical results of oral tranexamic acid and platelet rich plasma therapies in melasma treatment[J]. Dermatol Ther, 2022,35(7):e15499. doi: 10.1111/dth.15499. |
[48] | Minni K, Poojary S. Efficacy and safety of oral tranexamic acid as an adjuvant in Indian patients with melasma: a prospective, interventional, single⁃centre, triple⁃blind, randomized, placebo⁃control, parallel group study[J]. J Eur Acad Dermatol Venereol, 2020,34(11):2636⁃2644. doi: 10.1111/jdv.16598. |
[49] | Martinez⁃Rico JC, Chavez⁃Alvarez S, Herz⁃Ruelas ME, et al. Oral tranexamic acid with a triple combination cream versus oral tranexamic acid monotherapy in the treatment of severe melasma[J]. J Cosmet Dermatol, 2022,21(8):3451⁃3457. doi: 10.1111/jocd.14942. |
[50] | Dias J, Lima PB, Cassiano DP, et al. Oral ketotifen associated with famotidine for the treatment of facial melasma: a randomized, double⁃blind, placebo⁃controlled trial[J]. J Eur Acad Dermatol Venereol, 2022,36(2):e123⁃e125. doi: 10.1111/jdv.17692. |
[51] | Han R, Sun Y, Su M. Efficacy and safety of low⁃fluence 730⁃nm picosecond laser in the treatment of melasma in Chinese patients[J]. Dermatol Surg, 2025,51(2):166⁃170. doi: 10.1097/DSS. 0000000000004393. |
[52] | Liang S, Shang S, Tan A, et al. Comparative efficacy and safety of the novel picosecond alexandrite laser and the traditional combined Q⁃switched and long⁃pulse Nd: YAG lasers in melasma treatment: a randomized evaluator⁃blinded trial[J]. Lasers Med Sci, 2025,40(1):29. doi: 10.1007/s10103⁃025⁃04286⁃1. |
[53] | Zhou Y, Li Y, Hamblin MR, et al. Comparison of 755⁃nm picosecond alexandrite laser versus 1064⁃nm Q⁃switched Nd:YAG laser for melasma: a randomized, split⁃face controlled, 2⁃year follow⁃up study[J]. Lasers Surg Med, 2024,56(3):263⁃269. doi: 10.1002/lsm.23763. |
[54] | Galache TR, Sena MM, Tassinary J, et al. Photobiomodulation for melasma treatment: Integrative review and state of the art[J]. Photodermatol Photoimmunol Photomed, 2024,40(1):e12935. doi: 10.1111/phpp.12935. |
[55] | Chen L, Xu Z, Jiang M, et al. Light⁃emitting diode 585 nm photomodulation inhibiting melanin synthesis and inducing autophagy in human melanocytes[J]. J Dermatol Sci, 2018,89(1):11⁃18. doi: 10.1016/j.jdermsci.2017.10.001. |
[56] | Jin S, Chen L, Xu Z, et al. 585 nm light⁃emitting diodes inhibit melanogenesis through upregulating H19/miR⁃675 axis in LEDs⁃irradiated keratinocytes by paracrine effect[J]. J Dermatol Sci, 2020,98(2):102⁃108. doi: 10.1016/j.jdermsci.2020.03.002. |
[57] | Dai X, Jin S, Xuan Y, et al. 590 nm LED irradiation improved erythema through inhibiting angiogenesis of human microvascular endothelial cells and ameliorated pigmentation in melasma[J]. Cells, 2022,11(24):3949. doi: 10.3390/cells11243949. |
[58] | Han HJ, Kim JC, Park YJ, et al. Targeting the dermis for melasma maintenance treatment[J]. Sci Rep, 2024,14(1):949. doi: 10.1038/s41598⁃023⁃51133⁃w. |
[59] | Gulfan M, Wanitphakdeedecha R, Wongdama S, et al. Efficacy and safety of using noninsulated microneedle radiofrequency alone versus in combination with polynucleotides for the treatment of melasma: a pilot study[J]. Dermatol Ther (Heidelb), 2022,12(6):1325⁃1336. doi: 10.1007/s13555⁃022⁃00728⁃8. |
[60] | Mokhtari F, Bahrami B, Faghihi G, et al. Fractional erbium:YAG laser (2940 nm) plus topical hydroquinone compared to intradermal tranexamic acid plus topical hydroquinone for the treatment of refractory melasma: a randomized controlled trial[J]. J Dermatolog Treat, 2022,33(5):2475⁃2481. doi: 10.1080/09546634.2021.1968996. |
[1] | 田翠翠 陈浩. 皮肤T细胞淋巴瘤瘙痒发病机制研究进展[J]. 中华皮肤科杂志, 2025, 58(9): 890-892. |
[2] | 戴叶芹 宋秀祖. 毛囊及毛囊细胞移植在白癜风治疗中的应用进展[J]. 中华皮肤科杂志, 2025, 58(9): 882-885. |
[3] | 周妙妮 盛安琪 傅丽芳 金嵘 许文 尉晓冬 许爱娥. 茶多酚抗氧化凝胶联合窄谱中波紫外线治疗白癜风的疗效及安全性单中心随机对照试验[J]. 中华皮肤科杂志, 2025, 58(9): 834-838. |
[4] | 段博林 李倩雯 乐悦 耿朦朦 罗龙飞 雷铁池. 芦丁抑制紫外线照射诱导的真皮成纤维细胞衰老和鼠耳皮肤黑素生成[J]. 中华皮肤科杂志, 2025, 58(9): 801-807. |
[5] | 徐中奕 邢小雪 董雅琦 张成锋 项蕾红. 上海市某三甲医院黄褐斑患者254例临床特征及疗效的回顾性分析[J]. 中华皮肤科杂志, 2025, 58(9): 808-815. |
[6] | 何沐阳 金尚霖 张成锋. 性激素在黄褐斑发病中的作用及机制[J]. 中华皮肤科杂志, 2025, 58(9): 863-867. |
[7] | 钟洁敏 李薇 张淑娟 杨艳 薛如君 李欣怡 柯娅楠 陈晓吟 陈荃. 纳米微针与超声波导入氨甲环酸治疗黄褐斑的疗效与安全性比较:一项随机对照研究[J]. 中华皮肤科杂志, 2025, 58(9): 829-833. |
[8] | 张成锋 金尚霖. 黄褐斑发病机制与临床对策的新认识[J]. 中华皮肤科杂志, 2025, 58(9): 797-800. |
[9] | 朱婷婷, 李蔚然 潘召兵 刘昊 唐先发 朱才红 黄鹤群 段大威 张若晨 陈小建 汪洋 薛倩 张菊锐 杨丽婧 张学军, 黄贺, 张博, . 巴瑞替尼联合芦可替尼乳膏治疗6例进展期非节段型白癜风患者的疗效观察[J]. 中华皮肤科杂志, 2025, 58(9): 856-859. |
[10] | 张钰得 王红娟 康晓静. 干细胞治疗白癜风的基础及临床研究进展[J]. 中华皮肤科杂志, 2025, 58(9): 878-881. |
[11] | 罗帅寒天 龙海 陆前进. 2024年系统性红斑狼疮研究新进展[J]. 中华皮肤科杂志, 2025, 58(8): 777-780. |
[12] | 中国医师协会皮肤科医师分会痤疮学组 中国研究型医院学会皮肤科学专业委员会 中国中西医结合学会皮肤性病专业委员会痤疮学组. [开放获取] 寻常痤疮临床严重度分级及疗效评价中国专家共识(2025版)[J]. 中华皮肤科杂志, 2025, 58(8): 709-714. |
[13] | 薛珂 陈佳 李斌. 系统性红斑狼疮靶向治疗研究进展[J]. 中华皮肤科杂志, 2025, 58(8): 781-784. |
[14] | 陆前进 曹淑梅 蒋娇. 红斑狼疮研究的现状与挑战[J]. 中华皮肤科杂志, 2025, 58(8): 715-728. |
[15] | 柏琪 朱明芳 邬清婷 姬孝天 杨慧怡 马莉苹 周佳欣. 青藤碱对DNCB诱导的特应性皮炎样模型小鼠皮损改善的作用研究[J]. 中华皮肤科杂志, 2025, 58(8): 759-766. |
|