Chinese Journal of Dermatology ›› 2024, e20220865.doi: 10.35541/cjd.20220865
• Reviews • Previous Articles Next Articles
Chen Xingyu, Yao Xu
Received:
2022-12-05
Revised:
2023-12-22
Online:
2024-01-29
Published:
2024-02-06
Contact:
Yao Xu
E-mail:dryao_xu@126.com
Supported by:
Chen Xingyu, Yao Xu. Role of neutrophils in inflammatory dermatoses[J]. Chinese Journal of Dermatology,2024,e20220865. doi:10.35541/cjd.20220865
[1] | Burn GL, Foti A, Marsman G, et al. The neutrophil[J]. Immunity, 2021,54(7):1377⁃1391. doi: 10.1016/j.immuni.2021.06.006. |
[2] | Stark MA, Huo Y, Burcin TL, et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL⁃23 and IL⁃17[J]. Immunity, 2005,22(3):285⁃294. doi: 10.1016/j.immuni.2005.01. 011. |
[3] | Nakabo S, Romo⁃Tena J, Kaplan MJ. Neutrophils as drivers of immune dysregulation in autoimmune diseases with skin manifestations[J]. J Invest Dermatol, 2022,142(3 Pt B):823⁃833. doi: 10.1016/j.jid.2021.04.014. |
[4] | Caielli S, Athale S, Domic B, et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus[J]. J Exp Med, 2016,213(5):697⁃713. doi: 10.1084/jem.20151876. |
[5] | Papayannopoulos V. Neutrophil extracellular traps in immunity and disease[J]. Nat Rev Immunol, 2018,18(2):134⁃147. doi: 10.1038/nri.2017.105. |
[6] | Eash KJ, Greenbaum AM, Gopalan PK, et al. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow[J]. J Clin Invest, 2010,120(7):2423⁃2431. doi: 10.1172/JCI41649. |
[7] | Pérez⁃Figueroa E, Álvarez⁃Carrasco P, Ortega E, et al. Neutrophils: many ways to die[J]. Front Immunol, 2021,12:631821. doi: 10.3389/fimmu.2021.631821. |
[8] | Pires RH, Felix SB, Delcea M. The architecture of neutrophil extracellular traps investigated by atomic force microscopy[J]. Nanoscale, 2016,8(29):14193⁃14202. doi: 10.1039/c6nr03416k. |
[9] | Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004,303(5663):1532⁃1535. doi: 10.1126/science.1092385. |
[10] | Garcia⁃Romo GS, Caielli S, Vega B, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus[J]. Sci Transl Med, 2011,3(73):73ra20. doi: 10.1126/scitranslmed.3001201. |
[11] | Kienhöfer D, Hahn J, Stoof J, et al. Experimental lupus is aggravated in mouse strains with impaired induction of neutrophil extracellular traps[J]. JCI Insight, 2017,2(10):e92920. doi: 10.1172/jci.insight.92920. |
[12] | van der Linden M, van den Hoogen LL, Westerlaken G, et al. Neutrophil extracellular trap release is associated with antinuclear antibodies in systemic lupus erythematosus and anti⁃phospholipid syndrome[J]. Rheumatology (Oxford), 2018,57(7):1228⁃1234. doi: 10.1093/rheumatology/key067. |
[13] | Carmona⁃Rivera C, Zhao W, Yalavarthi S, et al. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase⁃2[J]. Ann Rheum Dis, 2015,74(7):1417⁃1424. doi: 10.1136/annrheumdis⁃2013⁃204837. |
[14] | Radermecker C, Sabatel C, Vanwinge C, et al. Locally instructed CXCR4hi neutrophils trigger environment⁃driven allergic asthma through the release of neutrophil extracellular traps[J]. Nat Immunol, 2019,20(11):1444⁃1455. doi: 10.1038/s41590⁃019⁃0496⁃9. |
[15] | Guo Y, Kasahara S, Jhingran A, et al. During Aspergillus infection, monocyte⁃derived DCs, neutrophils, and plasmacytoid DCs enhance innate immune defense through CXCR3⁃dependent crosstalk[J]. Cell Host Microbe, 2020,28(1):104⁃116.e4. doi: 10.1016/j.chom.2020.05.002. |
[16] | Funch AB, Mraz V, Gadsbøll AØ, et al. CD8+ tissue⁃resident memory T cells recruit neutrophils that are essential for flare⁃ups in contact dermatitis[J]. Allergy, 2022,77(2):513⁃524. doi: 10. 1111/all.14986. |
[17] | Wang J, Wang J. Neutrophils, functions beyond host defense[J]. Cell Immunol, 2022,379:104579. doi: 10.1016/j.cellimm.2022. 104579. |
[18] | Özcan A, Collado⁃Diaz V, Egholm C, et al. CCR7⁃guided neutrophil redirection to skin⁃draining lymph nodes regulates cutaneous inflammation and infection[J]. Sci Immunol, 2022,7(68):eabi9126. doi: 10.1126/sciimmunol.abi9126. |
[19] | Rodriguez⁃Rosales YA, Langereis JD, Gorris M, et al. Immunomodulatory aged neutrophils are augmented in blood and skin of psoriasis patients[J]. J Allergy Clin Immunol, 2021,148(4):1030⁃1040. doi: 10.1016/j.jaci.2021.02.041. |
[20] | Czerwińska J, Owczarczyk⁃Saczonek A. The role of the neutrophilic network in the pathogenesis of psoriasis[J]. Int J Mol Sci, 2022,23(3):1840. doi: 10.3390/ijms23031840. |
[21] | Dragan M, Sun P, Chen Z, et al. Epidermis⁃intrinsic transcription factor Ovol1 coordinately regulates barrier maintenance and neutrophil accumulation in psoriasis⁃like inflammation[J]. J Invest Dermatol, 2022,142(3 Pt A):583⁃593.e5. doi: 10.1016/j.jid.2021.08.397. |
[22] | Skrzeczynska⁃Moncznik J, Zabieglo K, Osiecka O, et al. Differences in staining for neutrophil elastase and its controlling inhibitor SLPI reveal heterogeneity among neutrophils in psoriasis[J]. J Invest Dermatol, 2020,140(7):1371⁃1378.e3. doi: 10.1016/j.jid.2019.12.015. |
[23] | Kim HJ, Roh JY, Jung Y. Eosinophils accelerate pathogenesis of psoriasis by supporting an inflammatory milieu that promotes neutrophil infiltration[J]. J Invest Dermatol, 2018,138(10):2185⁃2194. doi: 10.1016/j.jid.2018.03.1509. |
[24] | Metzemaekers M, Gouwy M, Proost P. Neutrophil chemoattractant receptors in health and disease: double⁃edged swords[J]. Cell Mol Immunol, 2020,17(5):433⁃450. doi: 10.1038/s41423⁃020⁃0412⁃0. |
[25] | Liu XT, Shi ZR, Lu SY, et al. Enhanced migratory ability of neutrophils toward epidermis contributes to the development of psoriasis via crosstalk with keratinocytes by releasing IL⁃17A[J]. Front Immunol, 2022,13:817040. doi: 10.3389/fimmu.2022. 817040. |
[26] | Chen J, Zhu Z, Li Q, et al. Neutrophils enhance cutaneous vascular dilation and permeability to aggravate psoriasis by releasing matrix metallopeptidase 9[J]. J Invest Dermatol, 2021,141(4):787⁃799. doi: 10.1016/j.jid.2020.07.028. |
[27] | Chiang CC, Cheng WJ, Korinek M, et al. Neutrophils in psoriasis[J]. Front Immunol, 2019,10:2376. doi: 10.3389/fimmu.2019. 02376. |
[28] | Lande R, Botti E, Jandus C, et al. The antimicrobial peptide LL37 is a T⁃cell autoantigen in psoriasis[J]. Nat Commun, 2014,5:5621. doi: 10.1038/ncomms6621. |
[29] | Ganguly D, Chamilos G, Lande R, et al. Self⁃RNA⁃antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8[J]. J Exp Med, 2009,206(9):1983⁃1994. doi: 10. 1084/jem.20090480. |
[30] | Xhindoli D, Pacor S, Benincasa M, et al. The human cathelicidin LL⁃37⁃⁃a pore⁃forming antibacterial peptide and host⁃cell modulator[J]. Biochim Biophys Acta, 2016,1858(3):546⁃566. doi: 10.1016/j.bbamem.2015.11.003. |
[31] | Herster F, Bittner Z, Archer NK, et al. Neutrophil extracellular trap⁃associated RNA and LL37 enable self⁃amplifying inflammation in psoriasis[J]. Nat Commun, 2020,11(1):105. doi: 10.1038/s41467⁃019⁃13756⁃4. |
[32] | Lambert S, Hambro CA, Johnston A, et al. Neutrophil extracellular traps induce human Th17 cells: effect of psoriasis⁃associated TRAF3IP2 genotype[J]. J Invest Dermatol, 2019,139(6):1245⁃1253. doi: 10.1016/j.jid.2018.11.021. |
[33] | Skrzeczynska⁃Moncznik J, Zabieglo K, Bossowski JP, et al. Eosinophils regulate interferon alpha production in plasmacytoid dendritic cells stimulated with components of neutrophil extracellular traps[J]. J Interferon Cytokine Res, 2017,37(3):119⁃128. doi: 10.1089/jir.2016.0036. |
[34] | Carmona⁃Rivera C, Kaplan MJ. Low⁃density granulocytes: a distinct class of neutrophils in systemic autoimmunity[J]. Semin Immunopathol, 2013,35(4):455⁃463. doi: 10.1007/s00281⁃013⁃0375⁃7. |
[35] | Fresneda Alarcon M, McLaren Z, Wright HL. Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: same foe different M.O[J]. Front Immunol, 2021,12:649693. doi: 10.3389/fimmu.2021.649693. |
[36] | Rahman S, Sagar D, Hanna RN, et al. Low⁃density granulocytes activate T cells and demonstrate a non⁃suppressive role in systemic lupus erythematosus[J]. Ann Rheum Dis, 2019,78(7):957⁃966. doi: 10.1136/annrheumdis⁃2018⁃214620. |
[37] | Mistry P, Nakabo S, O′Neil L, et al. Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus[J]. Proc Natl Acad Sci U S A, 2019,116(50):25222⁃25228. doi: 10.1073/pnas.1908576116. |
[38] | Kahlenberg JM, Carmona⁃Rivera C, Smith CK, et al. Neutrophil extracellular trap⁃associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages[J]. J Immunol, 2013,190(3):1217⁃1226. doi: 10.4049/jimmunol.1202388. |
[39] | Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF⁃kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression[J]. J Immunol, 2009,183(2):787⁃791. doi: 10.4049/jimmunol.0901363. |
[40] | Gestermann N, Di Domizio J, Lande R, et al. Netting neutrophils activate autoreactive B cells in lupus[J]. J Immunol, 2018,200(10):3364⁃3371. doi: 10.4049/jimmunol.1700778. |
[41] | Lande R, Ganguly D, Facchinetti V, et al. Neutrophils activate plasmacytoid dendritic cells by releasing self⁃DNA⁃peptide complexes in systemic lupus erythematosus[J]. Sci Transl Med, 2011,3(73):73ra19. doi: 10.1126/scitranslmed.3001180. |
[42] | Diaz⁃Perez JA, Killeen ME, Yang Y, et al. Extracellular ATP and IL⁃23 form a local inflammatory circuit leading to the development of a neutrophil⁃dependent psoriasiform dermatitis[J]. J Invest Dermatol, 2018,138(12):2595⁃2605. doi: 10.1016/j.jid.2018.05.018. |
[43] | Toussaint M, Jackson DJ, Swieboda D, et al. Host DNA released by NETosis promotes rhinovirus⁃induced type⁃2 allergic asthma exacerbation[J]. Nat Med, 2017,23(6):681⁃691. doi: 10.1038/nm.4332. |
[44] | Inokuchi⁃Sakata S, Ishiuji Y, Katsuta M, et al. Role of eosinophil relative count and neutrophil⁃to⁃lymphocyte ratio in the assessment of severity of atopic dermatitis[J]. Acta Derm Venereol, 2021,101(7):adv00491. doi: 10.2340/00015555⁃3838. |
[45] | Impellizzieri D, Ridder F, Raeber ME, et al. IL⁃4 receptor engagement in human neutrophils impairs their migration and extracellular trap formation[J]. J Allergy Clin Immunol, 2019,144(1):267⁃279.e4. doi: 10.1016/j.jaci.2019.01.042. |
[46] | Heeb L, Egholm C, Boyman O. Evolution and function of interleukin⁃4 receptor signaling in adaptive immunity and neutrophils[J]. Genes Immun, 2020,21(3):143⁃149. doi: 10. 1038/s41435⁃020⁃0095⁃7. |
[47] | Woytschak J, Keller N, Krieg C, et al. Type 2 interleukin⁃4 receptor signaling in neutrophils antagonizes their expansion and migration during infection and inflammation[J]. Immunity, 2016,45(1):172⁃184. doi: 10.1016/j.immuni.2016.06.025. |
[48] | Egholm C, Özcan A, Breu D, et al. Type 2 immune predisposition results in accelerated neutrophil aging causing susceptibility to bacterial infection[J]. Sci Immunol, 2022,7(71):eabi9733. doi: 10.1126/sciimmunol.abi9733. |
[49] | Dhingra N, Suárez⁃Fariñas M, Fuentes⁃Duculan J, et al. Attenuated neutrophil axis in atopic dermatitis compared to psoriasis reflects TH17 pathway differences between these diseases[J]. J Allergy Clin Immunol, 2013,132(2):498⁃501.e3. doi: 10.1016/j.jaci.2013.04.043. |
[50] | Bitschar K, Staudenmaier L, Klink L, et al. Staphylococcus aureus skin colonization is enhanced by the interaction of neutrophil extracellular traps with keratinocytes[J]. J Invest Dermatol, 2020,140(5):1054⁃1065.e4. doi: 10.1016/j.jid.2019. 10.017. |
[51] | Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship[J]. Trends Microbiol, 2018,26(6):484⁃497. doi: 10.1016/j.tim.2017.11.008. |
[52] | Liew FY, Girard JP, Turnquist HR. Interleukin⁃33 in health and disease[J]. Nat Rev Immunol, 2016,16(11):676⁃689. doi: 10. 1038/nri.2016.95. |
[53] | Wang X, Li X, Chen L, et al. Interleukin⁃33 facilitates cutaneous defense against Staphylococcus aureus by promoting the develop⁃ment of neutrophil extracellular trap[J]. Int Immunopharmacol, 2020,81:106256. doi: 10.1016/j.intimp.2020.106256. |
[54] | Walsh CM, Hill RZ, Schwendinger⁃Schreck J, et al. Neutrophils promote CXCR3⁃dependent itch in the development of atopic dermatitis[J]. Elife, 2019,8:e48448. doi: 10.7554/eLife.48448. |
[55] | Strzepa A, Gurski CJ, Dittel LJ, et al. Neutrophil⁃derived myeloperoxidase facilitates both the induction and elicitation phases of contact hypersensitivity[J]. Front Immunol, 2020,11:608871. doi: 10.3389/fimmu.2020.608871. |
[56] | Weber FC, Németh T, Csepregi JZ, et al. Neutrophils are required for both the sensitization and elicitation phase of contact hypersensitivity[J]. J Exp Med, 2015,212(1):15⁃22. doi: 10.1084/jem.20130062. |
[57] | Helou DG, Noël B, Gaudin F, et al. Cutting edge: Nrf2 regulates neutrophil recruitment and accumulation in skin during contact hypersensitivity[J]. J Immunol, 2019,202(8):2189⁃2194. doi: 10.4049/jimmunol.1801065. |
[58] | Shibuya R, Ishida Y, Hanakawa S, et al. CCL2⁃CCR2 signaling in the skin drives surfactant⁃induced irritant contact dermatitis through IL⁃1β⁃mediated neutrophil accumulation[J]. J Invest Dermatol, 2022,142(3 Pt A):571⁃582.e9. doi: 10.1016/j.jid. 2021.07.182. |
[59] | Saika A, Nagatake T, Kishino S, et al. 17(S),18(R)⁃epoxyeicosatetraenoic acid generated by cytochrome P450 BM⁃3 from Bacillus megaterium inhibits the development of contact hypersensitivity via G⁃protein⁃coupled receptor 40⁃mediated neutrophil suppression[J]. FASEB Bioadv, 2020,2(1):59⁃71. doi: 10.1096/fba.2019⁃00061. |
[60] | Feldmeyer L, Ribero S, Gloor AD, et al. Neutrophilic dermatoses with unusual and atypical presentations[J]. Clin Dermatol, 2021,39(2):261⁃270. doi: 10.1016/j.clindermatol.2020.10.012. |
[61] | Filosa A, Filosa G. Neutrophilic dermatoses: a broad spectrum of disease[J]. G Ital Dermatol Venereol, 2018,153(2):265⁃272. doi: 10.23736/S0392⁃0488.18.05841⁃8. |
[62] | Weiss EH, Ko CJ, Leung TH, et al. Neutrophilic dermatoses: a clinical update[J]. Curr Dermatol Rep, 2022,11(2):89⁃102. doi: 10.1007/s13671⁃022⁃00355⁃8. |
[63] | Heath MS, Ortega⁃Loayza AG. Insights into the pathogenesis of Sweet′s syndrome[J]. Front Immunol, 2019,10:414. doi: 10. 3389/fimmu.2019.00414. |
[64] | Nelson CA, Stephen S, Ashchyan HJ, et al. Neutrophilic dermatoses: pathogenesis, Sweet syndrome, neutrophilic eccrine hidradenitis, and Behçet disease[J]. J Am Acad Dermatol, 2018,79(6):987⁃1006. doi: 10.1016/j.jaad.2017.11.064. |
[65] | Maverakis E, Marzano AV, Le ST, et al. Pyoderma gangrenosum[J]. Nat Rev Dis Primers, 2020,6(1):81. doi: 10.1038/s41572⁃020⁃0213⁃x. |
[66] | Bonnekoh H, Scheffel J, Wu J, et al. Skin and systemic inflammation in Schnitzler′s syndrome are associated with neutrophil extracellular trap formation[J]. Front Immunol, 2019,10:546. doi: 10.3389/fimmu.2019.00546. |
[67] | Eid E, Safi R, El Hasbani G, et al. Characterizing the presence of neutrophil extracellular traps in neutrophilic dermatoses[J]. Exp Dermatol, 2021,30(7):988⁃994. doi: 10.1111/exd.14360. |
[68] | Mistry P, Carmona⁃Rivera C, Ombrello AK, et al. Dysregulated neutrophil responses and neutrophil extracellular trap formation and degradation in PAPA syndrome[J]. Ann Rheum Dis, 2018,77(12):1825⁃1833. doi: 10.1136/annrheumdis⁃2018⁃213746. |
[1] | Chen Jiaqi, Zhang Jin, Tang Jun. Relationships between coronavirus disease 2019 and psoriasis [J]. Chinese Journal of Dermatology, 2025, 58(1): 84-88. |
[2] | Jin Lan, Qiu Yun, Wang Weijia, Kang Xiaojing, Ding Yuan. Clinical efficacy and safety of biological agents in the treatment of moderate-to-severe psoriasis in 124 elderly patients: a retrospective analysis [J]. Chinese Journal of Dermatology, 2025, 58(1): 47-52. |
[3] | Wang Bo, Zheng Jie. Considerations in the treatment of elderly patients with psoriasis and atopic dermatitis using biologics and small-molecule drugs [J]. Chinese Journal of Dermatology, 2025, 58(1): 72-75. |
[4] | Qiao Jiaxi, Xia Ping, Chen Liuqing. Analysis of dermoscopic and reflectance confocal microscopic features of psoriatic lesions before and after treatment with secukinumab [J]. Chinese Journal of Dermatology, 2024, 57(9): 825-829. |
[5] | Dou Jinfa, Wang Jianbo, Zhang Shuai, Li Jianguo, Liu Hongwei, Zhang Shoumin. Analysis of changes in disease status and their influencing factors in patients with moderate to severe plaque psoriasis receiving biologic therapy during the coronavirus disease 2019 pandemic: a single-center cross-sectional study [J]. Chinese Journal of Dermatology, 2024, 57(8): 739-742. |
[6] | Lin Ziyuan, Pang Tianyi, Wu Jingwen, Jin Hui, . Role of polycyclic aromatic hydrocarbons in the occurrence and development of inflammatory skin diseases [J]. Chinese Journal of Dermatology, 2024, 57(8): 765-769. |
[7] | Sui Changlin, Chang Xiao, Zhao Qi, Zhu Wei. Psoriasis induced by anti-tumor targeted therapy and immunotherapy [J]. Chinese Journal of Dermatology, 2024, 57(6): 570-574. |
[8] | Lu Jiawei, Lu Yan. Paradoxical psoriasis induced by tumor necrosis factor-α inhibitors and other biological agents [J]. Chinese Journal of Dermatology, 2024, 57(5): 479-482. |
[9] | Zhang Yuanwen, Sun Congqian, Pan Wendong. Off-label clinical application of botulinum toxin in dermatology [J]. Chinese Journal of Dermatology, 2024, 57(5): 471-475. |
[10] | Hu Mengyao, Li Min, Chen Sihan, Wei Xuecui, Chen Yujie, Xu Song, Chen Xu, . Different regulatory effects of S100A8/A9 expressed by keratinocytes in three common inflammatory skin injury modes [J]. Chinese Journal of Dermatology, 2024, 57(5): 435-444. |
[11] | China Dermatologist Association, Combination of Traditional and Western Medicine Dermatology. Diagnosis and treatment of erythrodermic psoriasis: a Chinese expert consensus statement (2024) [J]. Chinese Journal of Dermatology, 2024, 57(5): 409-417. |
[12] | Ye Hui, Xue Rujun, Zhang Xibao. Application of biological therapies and mechanisms of immunophenotypic switching in psoriasis and atopic dermatitis [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220795-e20220795. |
[13] | Yuan Liyan, Yu Xiaoling, Wang Xiaohua, Yang Bin. TYK2 inhibitors for plaque psoriasis: mechanism of action and advances in clinical research [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220740-e0220740. |
[14] | Wei Lu, Wang Chang, Zhang Buxin, Xu Juntao, Wang Li, Wang Qingxing, Lu Lingling, Liu Aimin. Gender differences in psoriasis [J]. Chinese Journal of Dermatology, 2024, 0(3): 20230200-e20230200. |
[15] | Liu Lyuye, Zhang Junling. Ferroptosis in common skin diseases [J]. Chinese Journal of Dermatology, 2024, 0(3): 20220783-e20220783. |
|