Chinese Journal of Dermatology ›› 2024, Vol. 57 ›› Issue (3): 233-239.doi: 10.35541/cjd.20230499
• Original Articles • Previous Articles Next Articles
Lu Qin1,2, Huang Meirong2,3, Yang Hui2, Zhang Ningqing2, Min Xun1,2, Huang Jian1,2
Received:
2023-08-30
Revised:
2023-12-13
Online:
2024-03-15
Published:
2024-03-04
Contact:
Huang Jian
E-mail:81537648@qq.com
Supported by:
Lu Qin, Huang Meirong, Yang Hui, Zhang Ningqing, Min Xun, Huang Jian, . Preliminary evaluation of the immunoprotective effect of MetQ, a Neisseria gonorrhoeae vaccine candidate protein for intranasal immunization[J]. Chinese Journal of Dermatology, 2024, 57(3): 233-239.doi:10.35541/cjd.20230499
[1] | 岳晓丽, 龚向东, 李婧, 等. 2015—2019年中国淋病流行趋势与特征[J]. 中华皮肤科杂志, 2020,53(10):769⁃773. doi:10. 35541/cjd.20200623. |
[2] | Wang Q, Zhang R, Liu Q, et al. National guidelines on diagnosis and treatment of Gonorrhea in China (2020)[J]. Int J Dermatol Venerol, 2020,3(3):129⁃134. doi: 10.1097/JD9.000000000000 0072. |
[3] | Trinh TM, Nguyen TT, Le TV, et al. Neisseria gonorrhoeae FC428 subclone, Vietnam, 2019 -2020[J]. Emerg Infect Dis, 2022,28(2):432⁃435. doi: 10.3201/eid2802.211788. |
[4] | Yan J, Chen Y, Yang F, et al. High percentage of the ceftriaxone⁃resistant Neisseria gonorrhoeae FC428 clone among isolates from a single hospital in Hangzhou, China[J]. J Antimicrob Chemother, 2021,76(4):936⁃939. doi: 10.1093/jac/dkaa526. |
[5] | 陈绍椿, 刘经纬, 周可, 等. 头孢曲松耐药淋病奈瑟菌株FC428的流行、耐药机制及应对策略[J]. 中华皮肤科杂志, 2022,55(12):1122⁃1126. doi: 10.35541/cjd.20200528. |
[6] | Suay⁃García B, Pérez⁃Gracia MT. Future prospects for Neisseria gonorrhoeae treatment[J]. Antibiotics (Basel), 2018,7(2):49. doi: 10.3390/antibiotics7020049. |
[7] | Baarda BI, Zielke RA, Holm AK, et al. Comprehensive bioinformatic assessments of the variability of Neisseria gonorrhoeae vaccine candidates[J]. mSphere, 2021,6(1):e00977⁃00920. doi: 10.1128/mSphere.00977⁃20. |
[8] | Lin EY, Adamson PC, Klausner JD. Epidemiology, treatments, and vaccine development for antimicrobial⁃resistant Neisseria gonorrhoeae: current strategies and future directions[J]. Drugs, 2021,81(10):1153⁃1169. doi: 10.1007/s40265⁃021⁃01530⁃0. |
[9] | Akhtar AA, Turner DP. The role of bacterial ATP⁃binding cassette (ABC) transporters in pathogenesis and virulence: therapeutic and vaccine potential[J]. Microb Pathog, 2022,171:105734. doi: 10.1016/j.micpath.2022.105734. |
[10] | Zielke RA, Wierzbicki IH, Baarda BI, et al. Proteomics⁃driven antigen discovery for development of vaccines against gonorrhea[J]. Mol Cell Proteomics, 2016,15(7):2338⁃2355. doi: 10.1074/mcp.M116.058800. |
[11] | 张青, 黄健, 黄美容, 等. 淋病奈瑟菌NGO2105蛋白Passenger结构域的克隆表达、多克隆抗体制备及定位分析[J]. 中国皮肤性病学杂志, 2020,34(3):262⁃267. doi: 10.13735/j.cjdv.1001⁃7089.201906114. |
[12] | 陈佳琪, 刘颖, 董凤, 等. 淋病奈瑟菌候选外膜蛋白的免疫原性及膜定位的初步研究[J]. 中国病原生物学杂志, 2022,17(1):55⁃58,64. doi: 10.13350/j.cjpb.220112. |
[13] | Semchenko EA, Jen FE, Jennings MP, et al. Assessment of serum bactericidal and opsonophagocytic activity of antibodies to gonococcal vaccine targets[J]. Methods Mol Biol, 2022,2414:363⁃372. doi: 10.1007/978⁃1⁃0716⁃1900⁃1_19. |
[14] | 夏灵尹, 卢琴, 王小素, 等. 淋病奈瑟菌NGO2105蛋白660 ~ 1 468肽段的表达纯化及多克隆抗体的制备与鉴定[J]. 中华皮肤科杂志, 2023,56(3):216⁃221. doi: 10.35541/cjd.20220714. |
[15] | Signorelli C, Iannazzo S, Odone A. The imperative of vaccination put into practice[J]. Lancet Infect Dis, 2018,18(1):26⁃27. doi: 10.1016/S1473⁃3099(17)30696⁃5. |
[16] | Lewis VG, Ween MP, McDevitt CA. The role of ATP⁃binding cassette transporters in bacterial pathogenicity[J]. Protoplasma, 2012,249(4):919⁃942. doi: 10.1007/s00709⁃011⁃0360⁃8. |
[17] | Otsuka T, Kirkham C, Brauer A, et al. The vaccine candidate substrate binding protein SBP2 plays a key role in arginine uptake, which is required for growth of Moraxella catarrhalis[J]. Infect Immun, 2016,84(2):432⁃438. doi: 10.1128/IAI.00799⁃15. |
[18] | Rajam G, Anderton JM, Carlone GM, et al. Pneumococcal surface adhesin A (PsaA): a review[J]. Crit Rev Microbiol, 2008,34(3⁃4):163⁃173. doi: 10.1080/10408410802383610. |
[19] | Ferla MP, Patrick WM. Bacterial methionine biosynthesis[J]. Microbiology (Reading), 2014,160(Pt 8):1571⁃1584. doi: 10. 1099/mic.0.077826⁃0. |
[20] | Catlin BW. Nutritional profiles of Neisseria gonorrhoeae, Neisseria meningitidis, and Neisseria lactamica in chemically defined media and the use of growth requirements for gonococcal typing[J]. J Infect Dis, 1973,128(2):178⁃194. doi: 10.1093/infdis/128.2.178. |
[21] | Baarda BI, Zielke RA, Le Van A, et al. Neisseria gonorrhoeae MlaA influences gonococcal virulence and membrane vesicle production[J/OL]. PLoS Pathog, 2019,15(3):e1007385. doi: 10. 1371/ journal.ppat.1007385. |
[22] | Greenfield EA. Immunizing animals[J]. Cold Spring Harb Protoc, 2022,2022(7):Pdb.top100180. doi: 10.1101/pdb.top100180. |
[23] | McGhee JR, Mestecky J, Dertzbaugh MT, et al. The mucosal immune system: from fundamental concepts to vaccine development[J]. Vaccine, 1992,10(2):75⁃88. doi: 10.1016/0264⁃410x(92)90021⁃b. |
[24] | Almonacid⁃Mendoza HL, Humbert MV, Dijokaite A, et al. Structure of the recombinant Neisseria gonorrhoeae adhesin complex protein (rNg⁃ACP) and generation of murine antibodies with bactericidal activity against gonococci[J]. mSphere, 2018,3(5):e00331⁃00318. doi: 10.1128/mSphere.00331⁃ 18. |
[25] | Beernink PT, Ispasanie E, Lewis LA, et al. A meningococcal native outer membrane vesicle vaccine with attenuated endotoxin and overexpressed factor H binding protein elicits gonococcal bactericidal antibodies[J]. J Infect Dis, 2019,219(7):1130⁃1137. doi: 10.1093/infdis/jiy609. |
[26] | Kehagia E, Papakyriakopoulou P, Valsami G. Advances in intranasal vaccine delivery: a promising non⁃invasive route of immunization[J]. Vaccine, 2023,41(24):3589⁃3603. doi: 10. 1016/j.vaccine.2023.05.011. |
[27] | Hartwell BL, Melo MB, Xiao P, et al. Intranasal vaccination with lipid⁃conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity[J]. Sci Transl Med, 2022,14(654):eabn1413. doi: 10.1126/scitranslmed.abn1413. |
[28] | Price GA, Russell MW, Cornelissen CN. Intranasal administration of recombinant Neisseria gonorrhoeae transferrin binding proteins A and B conjugated to the cholera toxin B subunit induces systemic and vaginal antibodies in mice[J]. Infect Immun, 2005,73(7):3945⁃3953. doi: 10.1128/IAI.73.7.3945⁃ 3953.2005. |
[29] | Sun P, Li X, Pan C, et al. A short peptide of autotransporter Ata is a promising protective antigen for vaccination against Acinetobacter baumannii[J]. Front Immunol, 2022,13:884555. doi: 10.3389/fimmu.2022.884555. |
[30] | Suzuki T, Ainai A, Hasegawa H. Functional and structural characteristics of secretory IgA antibodies elicited by mucosal vaccines against influenza virus[J]. Vaccine, 2017,35(39):5297⁃5302. doi: 10.1016/j.vaccine.2017.07.093. |
[31] | Boero E, Vezzani G, Micoli F, et al. Functional assays to evaluate antibody⁃mediated responses against Shigella: a review[J]. Front Cell Infect Microbiol, 2023,13:1171213. doi: 10.3389/fcimb.2023.1171213. |
[32] | Huang J, Zhang Q, Chen J, et al. Neisseria gonorrhoeae NGO2105 is an autotransporter protein involved in adhesion to human cervical epithelial cells and in vivo colonization[J]. Front Microbiol, 2020,11:1395. doi: 10.3389/fmicb.2020.01395. |
|