Chinese Journal of Dermatology ›› 2018, Vol. 51 ›› Issue (11): 843-846.doi: 10.3760/cma.j.issn.0412-4030.2018.11.025
Previous Articles Next Articles
Zhi Dalong, Wang Gang
Received:
2017-11-16
Revised:
2018-01-12
Online:
2018-11-16
Published:
2018-10-31
Contact:
Wang Gang
E-mail:xjwgang@fmmu.edu.cn
Zhi Dalong, Wang Gang. Application of CRISPR?Cas9 system in related skin diseases and gene therapy[J].Chinese Journal of Dermatology, 2018, 51(11): 843-846.
[1] | Mali P, Aach J, Stranges PB, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering[J]. Nat Biotechnol, 2013,31(9):833⁃838. doi: 10.1038/nbt.2675.<br /> |
[2] | Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR⁃Cas system[J]. Nat Biotechnol, 2013,31(3):227⁃229. doi: 10.1038/nbt.2501.<br /> |
[3] | Li W, Teng F, Li T, et al. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR⁃Cas systems[J]. Nat Biotechnol, 2013,31(8):684⁃686. doi: 10.1038/nbt.2652.<br /> |
[4] | Yang H, Wang H, Shivalila CS, et al. One⁃step generation of mice carrying reporter and conditional alleles by CRISPR/Cas⁃mediated genome engineering[J]. Cell, 2013,154(6):1370⁃1379. doi: 10.1016/j.cell.2013.08.022.<br /> |
[5] | Niu Y, Shen B, Cui Y, et al. Generation of gene⁃modified cynomolgus monkey via Cas9/RNA⁃mediated gene targeting in one⁃cell embryos[J]. Cell, 2014,156(4):836⁃943. doi: 10.1016/j.cell. 2014.01.027.<br /> |
[6] | Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J Bacteriol, 1987,169(12):5429⁃5433.<br /> |
[7] | Mojica FJ, Díez⁃Villaseñor C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria[J]. Mol Microbiol, 2000,36(1):244⁃246. doi: 10.1046/j.1365⁃2958.2000.01838.x.<br /> |
[8] | Coffey A, Ross RP. Bacteriophage⁃resistance systems in dairy starter strains: molecular analysis to application[J]. Antonie Van Leeuwenhoek, 2002,82(1⁃4):303⁃321.<br /> |
[9] | Mojica FJ, Díez⁃Villaseñor C, García⁃Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. J Mol Evol, 2005,60(2):174⁃182. doi: 10.1007/s00239⁃004⁃0046⁃3.<br /> |
[10] | Wiedenheft B, Lander GC, Zhou K, et al. Structures of the RNA⁃guided surveillance complex from a bacterial immune system[J]. Nature, 2011,477(7365):486⁃489. doi: 10.1038/nature10402.<br /> |
[11] | Zhou X, Xin J, Fan N, et al. Generation of CRISPR/Cas9⁃mediated gene⁃targeted pigs via somatic cell nuclear transfer[J]. Cell Mol Life Sci, 2015,72(6):1175⁃1184. doi: 10.1007/s00018⁃014⁃1744⁃7.<br /> |
[12] | Xie F, Ye L, Chang JC, et al. Seamless gene correction of β⁃thalassemia mutations in patient⁃specific iPSCs using CRISPR/Cas9 and piggyBac[J]. Genome Res, 2014,24(9):1526⁃1533. doi: 10.1101/gr.173427.114.<br /> |
[13] | Howden SE, Maufort JP, Duffin BM, et al. Simultaneous re⁃programming and gene correction of patient fibroblasts[J]. Stem Cell Reports, 2015,5(6):1109⁃1118. doi: 10.1016/j.stemcr.2015.10. 009.<br /> |
[14] | Zhen S, Hua L, Takahashi Y, et al. In vitro and in vivo growth suppression of human papillomavirus 16⁃positive cervical cancer cells by CRISPR/Cas9[J]. Biochem Biophys Res Commun, 2014,450(4):1422⁃1426. doi: 10.1016/j.bbrc.2014.07.014.<br /> |
[15] | Liu X, Zhang Y, Cheng C, et al. CRISPR⁃Cas9⁃mediated multiplex gene editing in CAR⁃T cells[J]. Cell Res, 2017,27(1):154⁃157. doi: 10.1038/cr.2016.142.<br /> |
[16] | Chen ZH, Yu YP, Zuo ZH, et al. Targeting genomic re⁃arrangements in tumor cells through Cas9⁃mediated insertion of a suicide gene[J]. Nat Biotechnol, 2017,35(6):543⁃550. doi: 10. 1038/nbt.3843.<br /> |
[17] | Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015,526(7575):660⁃665. doi: 10.1038/nature15514.<br /> |
[18] | Simeonov DR, Gowen BG, Boontanrart M, et al. Discovery of stimulation⁃responsive immune enhancers with CRISPR activation[J]. Nature, 2017,549(7670):111⁃115. doi: 10.1038/nature23875.<br /> |
[19] | Zhu S, Li W, Liu J, et al. Genome⁃scale deletion screening of human long non⁃coding RNAs using a paired⁃guide RNA CRISPR⁃Cas9 library[J]. Nat Biotechnol, 2016,34(12):1279⁃1286. doi: 10.1038/nbt.3715.<br /> |
[20] | Manguso RT, Pope HW, Zimmer MD, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target[J]. Nature, 2017,547(7664):413⁃418. doi: 10.1038/nature23270.<br /> |
[21] | Hu W, Kaminski R, Yang F, et al. RNA⁃directed gene editing specifically eradicates latent and prevents new HIV⁃1 infection[J]. Proc Natl Acad Sci U S A, 2014,111(31):11461⁃11466. doi: 10. 1073/pnas.1405186111.<br /> |
[22] | Kaminski R, Bella R, Yin C, et al. Excision of HIV⁃1 DNA by gene editing: a proof⁃of⁃concept in vivo study[J]. Gene Ther, 2016,23(8⁃9):696. doi: 10.1038/gt.2016.45.<br /> |
[23] | Xu L, Yang H, Gao Y, et al. CRISPR/Cas9⁃mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV⁃1 resistance In vivo[J]. Mol Ther, 2017,25(8):1782⁃1789. doi: 10.1016/j.ymthe.2017.04.027.<br /> |
[24] | Yin C, Zhang T, Qu X, et al. In vivo excision of HIV⁃1 provirus by saCas9 and multiplex single⁃guide RNAs in animal models[J]. Mol Ther, 2017,25(5):1168⁃1186. doi: 10.1016/j.ymthe.2017.03. 012.<br /> |
[25] | Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA⁃guided endonuclease of a class 2 CRISPR⁃Cas system[J]. Cell, 2015,163(3):759⁃771. doi: 10.1016/j.cell.2015.09.038.<br /> |
[26] | Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015,520(7546):186⁃191. doi: 10.1038/nature14299.<br /> |
[27] | Kim E, Koo T, Park SW, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni[J]. Nat Commun, 2017,8:14500. doi: 10.1038/ncomms14500.<br /> |
[28] | Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage[J]. Nature, 2017,551(7681):464⁃471. doi: 10.1038/nature24644.<br /> |
[29] | Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double⁃stranded DNA cleavage[J]. Nature, 2016,533(7603):420⁃424. doi: 10.1038/nature 17946.<br /> |
[30] | Brouns SJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science, 2008,321(5891):960⁃964. doi: 10.1126/science.1159689.<br /> |
[31] | Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off⁃target effects of CRISPR⁃Cas9[J]. Nat Biotechnol, 2016,34(2):184⁃191. doi: 10.1038/nbt.3437.<br /> |
[32] | Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA⁃guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013,154(6):1380⁃1389. doi: 10.1016/j.cell.2013.08.021.<br /> |
[33] | Kleinstiver BP, Pattanayak V, Prew MS, et al. High⁃fidelity CRISPR⁃Cas9 nucleases with no detectable genome⁃wide off⁃target effects[J]. Nature, 2016,529(7587):490⁃495. doi: 10.1038/nature16526.<br /> |
[34] | Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity[J]. Science, 2016,351(6268):84⁃88. doi: 10.1126/science.aad5227.<br /> |
[35] | Chen JS, Dagdas YS, Kleinstiver BP, et al. Enhanced proofreading governs CRISPR⁃Cas9 targeting accuracy[J]. Nature, 2017,550(7676):407⁃410. doi: 10.1038/nature24268.<br /> |
No related articles found! |
|