Chinese Journal of Dermatology ›› 2022, Vol. 55 ›› Issue (11): 982-989.doi: 10.35541/cjd.20220084
• Original Articles • Previous Articles Next Articles
Tang Hongbo, Ma Qingyu, Sang Yingbing, Mao Lidan, Liang Junqin, Kang Xiaojing
Received:
2022-02-07
Revised:
2022-06-04
Online:
2022-11-15
Published:
2022-11-03
Contact:
Liang Junqin
E-mail:zyeemail@163.com
Supported by:
Tang Hongbo, Ma Qingyu, Sang Yingbing, Mao Lidan, Liang Junqin, Kang Xiaojing. Mechanisms underlying synergistic induction and promotion of cutaneous squamous cell carcinoma in nude mice by ultraviolet light and human papillomavirus 16 E6[J]. Chinese Journal of Dermatology, 2022, 55(11): 982-989.doi:10.35541/cjd.20220084
[1] | Alkrekshi A, Mustafa M, Abdul⁃Al H, et al. Recurrent cutaneous squamous cell carcinoma with direct invasion of the pleura: a case report[J]. Cureus, 2019,11(7):e5115. doi: 10.7759/cureus. 5115. |
[2] | Venables ZC, Nijsten T, Wong KF, et al. Epidemiology of basal and cutaneous squamous cell carcinoma in the U.K. 2013⁃15: a cohort study[J]. Br J Dermatol, 2019,181(3):474⁃482. doi: 10.1111/bjd.17873. |
[3] | Taylor SL, Renshaw BR, Garka KE, et al. Genomic organization of the interleukin⁃1 locus[J]. Genomics, 2002,79(5):726⁃733. doi: 10.1006/geno.2002.6752. |
[4] | Kivisaari A, Kähäri VM. Squamous cell carcinoma of the skin: Emerging need for novel biomarkers[J]. World J Clin Oncol, 2013,4(4):85⁃90. doi: 10.5306/wjco.v4.i4.85. |
[5] | Vigliani MB, Cunha CB. Multiple recurrent abscesses in a patient with undiagnosed IL⁃12 deficiency and infection by Burkholderia gladioli[J]. IDCases, 2018,12:80⁃83. doi: 10.1016/j.idcr.2018.03.018. |
[6] | Ratushny V, Gober MD, Hick R, et al. From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma[J]. J Clin Invest, 2012,122(2):464⁃472. doi: 10.1172/JCI57415. |
[7] | Amiraraghi N, Scott RA, Balaji N, et al. Human papillomavirus 16 and p16 positive nasal cutaneous squamous cell carcinoma in immunocompetent men in their twenties[J]. J Laryngol Otol, 2019,133(4):348⁃352. doi: 10.1017/S0022215119000641. |
[8] | Fujimoto M, Matsuzaki I, Takahashi Y, et al. High⁃risk human papillomavirus E6/E7 mRNA is rarely detected in nonanogenital cutaneous squamous cell carcinoma: an RNA in situ hybridization⁃based tissue microarray study[J]. Am J Dermatopathol, 2019,41(3):205⁃210. doi: 10.1097/DAD.000000 0000001289. |
[9] | Rollison DE, Pawlita M, Giuliano AR, et al. Measures of cutaneous human papillomavirus infection in normal tissues as biomarkers of HPV in corresponding nonmelanoma skin cancers[J]. Int J Cancer, 2008,123(10):2337⁃2342. doi: 10.1002/ijc. 23795. |
[10] | Chen ML, Wang SH, Wei JC, et al. The impact of human papillomavirus infection on skin cancer: a population⁃based cohort study[J]. Oncologist, 2021,26(3):e473⁃e483. doi: 10. 1002/onco.13593. |
[11] | Tommasino M. The biology of beta human papillomaviruses[J]. Virus Res, 2017,231:128⁃138. doi: 10.1016/j.virusres.2016.11. 013. |
[12] | Meyers JM, Munger K. The viral etiology of skin cancer[J]. J Invest Dermatol, 2014,134(e1):E29⁃E32. doi: 10.1038/skinbio. 2014.6. |
[13] | Viarisio D, Decker KM, Aengeneyndt B, et al. Human papillomavirus type 38 E6 and E7 act as tumour promoters during chemically induced skin carcinogenesis[J]. J Gen Virol, 2013,94(Pt 4):749⁃752. doi: 10.1099/vir.0.048991⁃0. |
[14] | Hasche D, Stephan S, Braspenning⁃Wesch I, et al. The interplay of UV and cutaneous papillomavirus infection in skin cancer development[J]. PLoS Pathog, 2017,13(11):e1006723. doi: 10.1371/journal.ppat.1006723. |
[15] | Chakraborty B, Mukhopadhyay D, Roychowdhury A, et al. Differential Wnt⁃β⁃catenin pathway activation in HPV positive and negative oral epithelium is transmitted during head and neck tumorigenesis: clinical implications[J]. Med Microbiol Immunol, 2021,210(1):49⁃63. doi: 10.1007/s00430⁃020⁃00697⁃9. |
[16] | Sitte M, Menck K, Wachter A, et al. Reconstruction of different modes of WNT dependent protein networks from time series protein quantification[J]. Stud Health Technol Inform, 2019,267:175⁃180. doi: 10.3233/SHTI190823. |
[17] | Su Z, Song J, Wang Z, et al. Tumor promoter TPA activates Wnt/β⁃catenin signaling in a casein kinase 1⁃dependent manner[J]. Proc Natl Acad Sci U S A, 2018,115(32):E7522⁃E7531. doi: 10.1073/pnas.1802422115. |
[18] | Li C, Liang Y, Cao J, et al. The delivery of a Wnt pathway inhibitor toward cscs requires stable liposome encapsulation and delayed drug release in tumor tissues[J]. Mol Ther, 2019,27(9):1558⁃1567. doi: 10.1016/j.ymthe.2019.06.013. |
[19] | El⁃Sahli S, Xie Y, Wang L, et al. Wnt signaling in cancer metabolism and immunity[J]. Cancers (Basel), 2019,11(7):904. doi: 10.3390/cancers11070904. |
[20] | Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis[J]. Development, 2018,145(11):dev146589. doi: 10.1242/dev.146589. |
[21] | Zimmerli D, Cecconi V, Valenta T, et al. WNT ligands control initiation and progression of human papillomavirus⁃driven squamous cell carcinoma[J]. Oncogene, 2018,37(27):3753⁃3762. doi: 10.1038/s41388⁃018⁃0244⁃x. |
[22] | Zimmerli D, Borrelli C, Jauregi⁃Miguel A, et al. TBX3 acts as tissue⁃specific component of the Wnt/β⁃catenin transcriptional complex[J]. Elife, 2020,9:e58123. doi: 10.7554/eLife.58123. |
[23] | Lu X, Jiang L, Zhang L, et al. Immune signature⁃based subtypes of cervical squamous cell carcinoma tightly associated with human papillomavirus type 16 expression, molecular features, and clinical outcome[J]. Neoplasia, 2019,21(6):591⁃601. doi: 10.1016/j.neo.2019.04.003. |
[24] | Viarisio D, Müller⁃Decker K, Accardi R, et al. Beta HPV38 oncoproteins act with a hit⁃and⁃run mechanism in ultraviolet radiation⁃induced skin carcinogenesis in mice[J]. PLoS Pathog, 2018,14(1):e1006783. doi: 10.1371/journal.ppat.1006783. |
[25] | Pacini L, Ceraolo MG, Venuti A, et al. UV radiation activates Toll⁃like receptor 9 expression in primary human keratinocytes, an event inhibited by human papillomavirus 38 E6 and E7 oncoproteins[J]. J Virol, 2017,91(19):e01123⁃17. doi: 10.1128/JVI.01123⁃17. |
[26] | Bouvard V, Baan R, Straif K, et al. A review of human carcinogens⁃⁃Part B: biological agents[J]. Lancet Oncol, 2009,10(4):321⁃322. doi: 10.1016/s1470⁃2045(09)70096⁃8. |
[1] | Tang Qiao, Deng Danqi. Skin imaging technologies for photoaging [J]. Chinese Journal of Dermatology, 2022, 55(9): 838-840. |
[2] | Xu Cui, He Yong, Wu Yilin, Lyu Qun, Li Liming, Jiang Mingjun. Establishment and identification of human immortalized keratinocytes stably expressing human papillomavirus type 16 E6/E7 gene [J]. Chinese Journal of Dermatology, 2022, 55(6): 501-507. |
[3] | . Role and action mechanism of microRNA-26a targeting EZH2 in ultraviolet A-induced photoaging of human skin fibroblasts [J]. Chinese Journal of Dermatology, 2021, 54(7): 612-619. |
[4] | Chen Hongying, Chen Xu, Li Li, Gu Heng. Effect of resveratrol on apoptosis and cell cycle of human keratinocytes irradiated by ultraviolet B [J]. Chinese Journal of Dermatology, 2021, 54(5): 408-413. |
[5] | Zhang Huaxiong, Yan Sha, He Lin, Li Lin, Chen Zhaohui, Li Ji, . Role and action mechanism of aquaporin 3 in alleviating photoaging of skin fibroblasts by regulating hnRNPQ/p53 [J]. Chinese Journal of Dermatology, 2021, 54(4): 325-334. |
[6] | Chen Quan, Tang Yi, Li Huaping, Chen Jiaoquan, Peng Liqian, Yang Ridong, Deng Huiyan, Li Zhenjie, Zhu Huilan. Effect of pterostilbene on the growth, apoptosis and autophagy of a human papillomavirus type 16-immortalized cervical epithelial cell line H8 [J]. Chinese Journal of Dermatology, 2021, 54(10): 861-868. |
[7] | Hu Cui, Li Wei, Zhang Ting, Lu Hui, Wu Yafang, Qian Hua. Mechanism of miRNA-1246 targeting MAPK14 in ultraviolet A-induced photoaging of human fibroblasts [J]. Chinese Journal of Dermatology, 2020, 53(6): 439-444. |
[8] | Lin Fang, Ma Liangjuan, Zhang Xiaohui, Bai Bingxue. Protective effect of Nrf2 protein against ultraviolet B-induced photodamage to HaCaT cells [J]. Chinese Journal of Dermatology, 2020, 53(2): 128-132. |
[9] | Zhang Xiaohui, Lin Fang, Ma Liangjuan. Protective effect of exogenous biliverdin on ultraviolet B-induced photodamage to keratinocytes and its mechanisms [J]. Chinese Journal of Dermatology, 2020, 53(10): 807-810. |
[10] | Xia Yue, Lai Wei, Liu Yufang, Zhang Jie, Zheng Yue. Mechanisms underlying repeated ultraviolet A radiation-induced DNA damage in human skin fibroblasts [J]. Chinese Journal of Dermatology, 2019, 52(9): 631-635. |
[11] | Li Lingjia, Liu Tongyun . Expression of caspase-14 in skin lesions of patients with chronic actinic dermatitis and effect of ultraviolet B radiation on its mRNA and protein expression in HaCaT cells [J]. Chinese Journal of Dermatology, 2019, 52(7): 486-490. |
[12] | Cheng Xianye, Qian Wen, Jin Yi, Li Xielun, Su Dongming, Chen Bin. Effect of ultraviolet and all-trans retinoic acid on expression of Hrd1 in human skin and fibroblasts [J]. Chinese Journal of Dermatology, 2019, 52(4): 253-258. |
[13] | Ying-Di LIU Bingxue BAI juan liangma. Protective effect of exogenous biliverdin against ultraviolet B-induced photodamage in HaCaT cells [J]. Chinese Journal of Dermatology, 2018, 51(4): 279-282. |
[14] | Lei Jiehao, Fan Qimin, Xu Ai′e. Efficacy of home versus hospital narrow-band ultraviolet B phototherapy for vitiligo [J]. Chinese Journal of Dermatology, 2018, 51(10): 749-751. |
[15] | Song Xiaojing, Peng Yating, Chen Haiyan, Zheng Yue, Xu Qingfang, Gong Zijian, Lu Chun, Lai Wei. Effects of miRNA-29c-3p on the of collagen typeⅠα1 and collagen type Ⅲ α1 genes and the synthesis of collagenⅠand Ⅲ in chronically photodamaged human dermal fibroblasts in vitro [J]. Chinese Journal of Dermatology, 2017, 50(12): 869-874. |
|