中华皮肤科杂志 ›› 2009, Vol. 42 ›› Issue (7): 467-469.

• 论著 • 上一篇    下一篇

肽聚糖对正常人表皮角质形成细胞分泌趋化因子的影响及Toll样受体2的作用

刘苏俊1,林麟2,张彩萍3,周武庆4,冯雨苗2,马一平2   

  1. 1. 杭州市第三人民医院
    2. 南京 中国医学科学院北京协和医学院皮肤病研究所
    3. 中国医学科学院、中国协和医科大学皮肤病研究所
    4. 南京医科院皮研所
  • 收稿日期:2008-08-08 修回日期:2009-02-23 出版日期:2009-07-15 发布日期:2009-07-08
  • 通讯作者: 刘苏俊

Peptidoglycan modulation of chemokine production in normal human epidermal keratinocytes and the role of Toll-like receptor 2 in this process

  • Received:2008-08-08 Revised:2009-02-23 Online:2009-07-15 Published:2009-07-08

摘要:

目的 研究金黄色葡萄球菌肽聚糖对正常人表皮角质形成细胞(NHEK)分泌IL-8、调节激活正常T细胞表达和分泌的细胞因子(RANTES)以及巨噬细胞来源的趋化因子(MDC)的影响以及Toll样受体2在其中的作用。方法 分别用不同浓度金黄色葡萄球菌肽聚糖(3、10、30、100 mg/L)处理NHEK 24 h,以及100 mg/L肽聚糖处理NHEK 3、6、12、36 h后,采用ELISA检测细胞培养上清液中IL-8、 RANTES以及 MDC的水平。预先加用功能性Toll样受体2单克隆抗体处理培养细胞,再以100 mg/L肽聚糖处理NHEK 12 h,检测上述趋化因子的浓度。结果 NHEK可以自发地分泌IL-8和RANTES。3、10、30、100 mg/L的肽聚糖可诱导 NHEK分泌IL-8(分别为209.96 ± 10.31、250.28 ± 9.52、285.11 ± 10.28、359.40 ± 6.93 ng/L),且较未处理组(135.41 ± 14.37 ng/L)明显升高(P < 0.05);10、30、100 mg/L的肽聚糖可抑制 NHEK分泌RANTES(分别为110.72 ± 8.51、90.50 ± 2.45、49.89 ± 13.74 ng/L),且较未处理组(149.94 ± 18.71 ng/L)明显降低(P < 0.05)。Toll样受体2单克隆抗体可以明显抑制肽聚糖诱导分泌IL-8,但对其分泌RANTES无明显影响。未检测到NHEK自发性产生或肽聚糖刺激作用下产生MDC。结论 肽聚糖可能通过激活Toll样受体2途径诱导NHEK增加分泌IL-8。肽聚糖能够抑制NHEK产生RANTES。

关键词: 肽聚糖;人表皮角质形成细胞;趋化因子;Toll样受体2

Abstract:

Objective To investigate the effect of peptidoglycan from Staphylococcus aureus on the release of several chemokines including interleukin 8 (IL-8), regulated upon activation, normal T cell expressed and secreted (RANTES), macrophage-derived chemokine (MDC) by normal human epidermal keratinocytes (KCs) and the role of Toll-like receptor 2 (TLR2) in this process. Methods KCs were derived from the foreskin of a healthy boy and propagated. After 2 - 4 passages, KCs were collected and treated with various concentrations (3, 10, 30 and 100 mg/L) of peptidoglycan for 24 hours or with peptidoglycan of 100 mg/L for varying durations (3, 6, 12, 36 hours). A fraction of KCs were pretreated with functional grade purified anti-TLR2 monoclonal antibody before the treatment with peptidoglycan of 100 mg/L. After additional 12-hour culture following the treatment, enzyme linked immunosorbent assay was used to detect the level of IL-8, RANTES and MDC in culture supernatants of KCs. Results KCs spontaneously released IL-8 and RANTES. Peptidoglycan increased the production of IL-8 but decreased that of RANTES by KCs. The levels of IL-8 were 209.96 ± 10.31 ng/L, 250.28 ± 9.52 ng/L, 285.11 ± 10.28 ng/L, 359.40 ± 6.93 ng/L in KCs treated with peptidoglycan of 3, 10, 30, 100 mg/L, respectively, compared to 135.41 ± 14.37 ng/L in untreated KCs (all P < 0.05). On the contrary, a significant decrement was seen in the secretion of RANTES by KCs treated with peptidoglycan of 10, 30, 100 mg/L compared with untreated KCs (110.72 ± 8.51 ng/L, 90.50 ± 2.45 ng/L, 49.89 ± 13.74 ng/L vs 149.94 ± 18.71 ng/L, all P < 0.05). The monoclonal antibody to TLR-2 could markedly suppress the promotion of IL-8 production by peptidoglycan, but had no obvious influence on the inhibition of RANTES production by peptidoglycan. MDC could not be detected in the culture supernatants of KCs with or without peptidoglycan stimulation. Conclusion Peptidoglycan could inhibit RANTES secretion but induce IL-8 production by KCs likely via TLR2.