[1] |
Park JB, Seong SH, Kwon DI, et al. Mycobacterium marinum infection spreading in a "birds in flocks" pattern: all caseating granuloma is not tuberculosis[J]. Acta Derm Venereol, 2020,100(14):adv00200. doi: 10.2340/00015555⁃3538.
|
[2] |
Gonzalez⁃Santiago TM, Drage LA. Nontuberculous mycobacteria: skin and soft tissue infections[J]. Dermatol Clin, 2015,33(3):563⁃577. doi: 10.1016/j.det.2015.03.017.
|
[3] |
Rapovy SM, Zhao J, Bricker RL, et al. Differential requirements for L⁃citrulline and L⁃arginine during antimycobacterial macrophage activity[J]. J Immunol, 2015,195(7):3293⁃3300. doi: 10.4049/jimmunol.1500800.
|
[4] |
Langston PK, Shibata M, Horng T. Metabolism supports macrophage activation[J]. Front Immunol, 2017,8:61. doi: 10. 3389/fimmu.2017.00061.
|
[5] |
Van den Bossche J, O'Neill LA, Menon D. Macrophage immunometabolism: where are we (going)?[J]. Trends Immunol, 2017,38(6):395⁃406. doi: 10.1016/j.it.2017.03.001.
|
[6] |
Stienstra R, Netea⁃Maier RT, Riksen NP, et al. Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses[J]. Cell Metab, 2017,26(1):142⁃156. doi: 10.1016/j.cmet.2017.06.001.
|
[7] |
Kim JK, Park EJ, Jo EK. Itaconate, arginine, and gamma⁃aminobutyric acid: a host metabolite triad protective against mycobacterial infection[J]. Front Immunol, 2022,13:832015. doi: 10.3389/fimmu.2022.832015.
|
[8] |
Zuo X, Wang L, Bao Y, et al. The ESX⁃1 virulence factors downregulate miR⁃147⁃3p in Mycobacterium marinum⁃infected macrophages[J]. Infect Immun, 2020,88(6):e00088⁃00020. doi: 10.1128/IAI.00088⁃20.
|
[9] |
刘冬梅, 韩晓群, 杨婧, 等. PPARγ/CD36信号通路在结核分枝杆菌感染巨噬细胞脂质代谢中的作用[J]. 中华微生物学和免疫学杂志, 2021,41(10):749⁃756. doi: 10.3760/cma.j.cn112309⁃20201231⁃00578.
|
[10] |
Zeng T, Fang B, Huang F, et al. Mass spectrometry⁃based metabolomics investigation on two different indica rice grains (Oryza sativa L.) under cadmium stress[J]. Food Chem, 2021,343:128472. doi: 10.1016/j.foodchem.2020.128472.
|
[11] |
Li M, Haixia Y, Kang M, et al. The arachidonic acid metabolism mechanism based on UPLC⁃MS/MS metabolomics in recurrent spontaneous abortion rats[J]. Front Endocrinol (Lausanne), 2021,12:652807. doi: 10.3389/fendo.2021.652807.
|
[12] |
Chen JX, Han YS, Zhang SQ, et al. Novel therapeutic evaluation biomarkers of lipid metabolism targets in uncomplicated pulmonary tuberculosis patients[J]. Signal Transduct Target Ther, 2021,6(1):22. doi: 10.1038/s41392⁃020⁃00427⁃w.
|
[13] |
Castillo NE, Gurram P, Sohail MR, et al. Fishing for a diagnosis, the impact of delayed diagnosis on the course of Mycobacterium marinum infection: 21 years of experience at a tertiary care hospital[J]. Open Forum Infect Dis, 2020,7(1):ofz550. doi: 10. 1093/ofid/ofz550.
|
[14] |
Hurst LC, Amadio PC, Badalamente MA, et al. Mycobacterium marinum infections of the hand[J]. J Hand Surg Am, 1987,12(3):428⁃435. doi: 10.1016/s0363⁃5023(87)80018⁃7.
|
[15] |
顾伟, 杨蓊勃, 杨剑云, 等. 手部深部分枝杆菌感染的诊断与治疗[J]. 复旦学报(医学版), 2010,37(4):472⁃474. doi: 10. 3969/j.issn.1672⁃8467.2010.04.020.
|
[16] |
暴芳芳, 刘红, 张福仁. 海分枝杆菌感染的历史与现状[J]. 中国麻风皮肤病杂志, 2020,36(11):690⁃696. doi: 10.12144/zgmfskin202011690.
|
[17] |
Chen Z, Kong X, Ma Q, et al. The impact of Mycobacterium tuberculosis on the macrophage cholesterol metabolism pathway [J]. Front Immunol, 2024, 15: 1402024.doi: 10.3389/fimmu.2024. 1402024.
|
[18] |
O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists[J]. Nat Rev Immunol, 2016,16(9):553⁃565. doi: 10.1038/nri.2016.70.
|
[19] |
Qualls JE, Subramanian C, Rafi W, et al. Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1[J]. Cell Host Microbe, 2012,12(3):313⁃323. doi: 10.1016/j.chom.2012.07.012.
|
[20] |
Lange SM, McKell MC, Schmidt SM, et al. L⁃citrulline metabolism in mice augments CD4(+) T cell proliferation and cytokine production in vitro, and accumulation in the mycobacteria⁃infected lung[J]. Front Immunol, 2017,8:1561. doi: 10.3389/fimmu.2017.01561.
|
[21] |
Mao Y, Shi D, Li G, et al. Citrulline depletion by ASS1 is required for proinflammatory macrophage activation and immune responses[J]. Mol Cell, 2022, 82(3): 527⁃541. doi: 10.1016/j.molcel.2021.12.006.
|
[22] |
Papathanassiu AE, Ko JH, Imprialou M, et al. BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases[J]. Nat Commun, 2017,8:16040. doi: 10.1038/ncomms16040.
|
[23] |
Awasthy D, Bharath S, Subbulakshmi V, et al. Alanine racemase mutants of Mycobacterium tuberculosis require D⁃alanine for growth and are defective for survival in macrophages and mice[J]. Microbiology (Reading), 2012,158(Pt 2):319⁃327. doi: 10. 1099/mic.0.054064⁃0.
|
[24] |
Borah Slater K, Moraes L, Xu Y, et al. Metabolic flux reprogramming in Mycobacterium tuberculosis⁃infected human macrophages[J]. Front Microbiol, 2023,14:1289987. doi: 10. 3389/fmicb.2023.1289987.
|
[25] |
Rodriguez AE, Ducker GS, Billingham LK, et al. Serine metabolism supports macrophage IL⁃1beta production[J]. Cell Metab, 2019,29(4):1003⁃1011. doi:10.1016/j.cmet.2019.01.014.
|
[26] |
Shan X, Hu P, Ni L, et al. Serine metabolism orchestrates macrophage polarization by regulating the IGF1⁃p38 axis[J]. Cell Mol Immunol, 2022,19(11):1263⁃1278. doi: 10.1038/s41423⁃022⁃00925⁃7.
|
[27] |
Korte J, Alber M, Trujillo CM, et al. Trehalose⁃6⁃phosphate⁃mediated toxicity determines essentiality of OtsB2 in Mycobacterium tuberculosis in vitro and in mice[J]. PLoS Pathog, 2016,12(12):e1006043. doi: 10.1371/journal.ppat.100 6043.
|
[28] |
Baardman J, Verberk SGS, Prange KHM, et al. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia[J]. Cell Rep, 2018,25(8):2044⁃2052. doi: 10.1016/j.celrep.2018.10.092.
|
[29] |
Park HY, Kang HS, Im SS. Recent insight into the correlation of SREBP⁃mediated lipid metabolism and innate immune response[J]. J Mol Endocrinol, 2018, 61(3): 123⁃131. doi:10. 1530/JME⁃17⁃0289.
|
[30] |
Das UN. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: a review[J]. J Adv Res, 2018,11:57⁃66. doi: 10.1016/j.jare.2018.01.001.
|
[31] |
Seidel V, Taylor PW. In vitro activity of extracts and constituents of pelagonium against rapidly growing mycobacteria[J]. Int J Antimicrob Agents, 2004,23(6):613⁃619. doi: 10.1016/j.ijantimicag.2003.11.008.
|
[32] |
Xu M, Wang X, Li Y, et al. Arachidonic acid metabolism controls macrophage alternative activation through regulating oxidative phosphorylation in PPARγ dependent manner[J]. Front Immunol, 2021,12:618501. doi: 10.3389/fimmu.2021.61 8501.
|
[33] |
Li X, Kempf S, Günther S, et al. 11,12⁃EET regulates PPAR⁃γ expression to modulate TGF⁃β⁃mediated macrophage polarization[J]. Cells, 2023,12(5):700. doi: 10.3390/cells12050700.
|
[34] |
Zhou Y, Liu T, Duan JX, et al. Soluble epoxide hydrolase inhibitor attenuates lipopolysaccharide⁃induced acute lung injury and improves survival in mice[J]. Shock, 2017,47(5):638⁃645. doi: 10.1097/SHK.0000000000000767.
|
[35] |
Liu W, Wang B, Ding H, et al. A potential therapeutic effect of CYP2C8 overexpression on anti⁃TNF⁃α activity[J]. Int J Mol Med, 2014,34(3):725⁃732. doi: 10.3892/ijmm.2014.1844.
|
[36] |
Chen J, Purvis G, Collotta D, et al. RvE1 attenuates polymicrobial sepsis⁃induced cardiac dysfunction and enhances bacterial clearance[J]. Front Immunol, 2020,11:2080. doi: 10.3389/fimmu.2020.02080.
|
[37] |
Zhang Y, Olson RM, Brown CR. Macrophage LTB(4) drives efficient phagocytosis of Borrelia burgdorferi via BLT1 or BLT2[J]. J Lipid Res, 2017,58(3):494⁃503. doi: 10.1194/jlr.M06 8882.
|
[38] |
Pernet E, Downey J, Vinh DC, et al. Leukotriene B(4)⁃type I interferon axis regulates macrophage⁃mediated disease tolerance to influenza infection[J]. Nat Microbiol, 2019,4(8):1389⁃1400. doi: 10.1038/s41564⁃019⁃0444⁃3.
|