| [1] |
Guinea J. Global trends in the distribution of Candida species causing candidemia[J]. Clin Microbiol Infect, 2014,20 Suppl 6:5⁃10. doi: 10.1111/1469⁃0691.12539.
|
| [2] |
李硕, 孙袁媛, 郝瑞英, 等. 巨噬细胞来源外泌体对白念珠菌形态转换的影响[J]. 中华皮肤科杂志, 2024,57(6):539⁃546. doi: 10.35541/cjd.20230696.
|
| [3] |
Shelest E. Transcription factors in fungi[J]. FEMS Microbiol Lett, 2008,286(2):145⁃151. doi: 10.1111/j.1574⁃6968.2008. 01293.x.
|
| [4] |
Aoki Y, Ishii N, Watanabe M, et al. Rbf1 (RPG⁃box binding factor), a transcription factor involved in yeast⁃hyphal transition of Candida albicans[J]. Nihon Ishinkin Gakkai Zasshi, 1998,39(2):67⁃71. doi: 10.3314/jjmm.39.67.
|
| [5] |
Heimel K, Scherer M, Vranes M, et al. The transcription factor Rbf1 is the master regulator for b⁃mating type controlled pathogenic development in Ustilago maydis[J]. PLoS Pathog, 2010,6(8):e1001035. doi: 10.1371/journal.ppat.1001035.
|
| [6] |
Khamooshi K, Sikorski P, Sun N, et al. The Rbf1, Hfl1 and Dbp4 of Candida albicans regulate common as well as transcription factor⁃specific mitochondrial and other cell activities[J]. BMC Genomics, 2014,15:56. doi: 10.1186/1471⁃2164⁃15⁃56.
|
| [7] |
Katsipoulaki M, Stappers MHT, Malavia⁃Jones D, et al. Candida albicans and Candida glabrata: global priority pathogens[J]. Microbiol Mol Biol Rev, 2024,88(2):e0002123. doi: 10.1128/mmbr.00021⁃23.
|
| [8] |
Austermeier S, Kasper L, Westman J, et al. I want to break free ⁃ macrophage strategies to recognize and kill Candida albicans, and fungal counter⁃strategies to escape[J]. Curr Opin Microbiol, 2020,58:15⁃23. doi: 10.1016/j.mib.2020.05.007.
|
| [9] |
Marcil A, Gadoury C, Ash J, et al. Analysis of PRA1 and its relationship to Candida albicans⁃ macrophage interactions[J]. Infect Immun, 2008,76(9):4345⁃4358. doi: 10.1128/IAI.00588⁃07.
|
| [10] |
Zhang F, Lian N, Li M. Macrophage pyroptosis induced by Candida albicans[J]. Pathog Dis, 2024,82:ftae003. doi: 10.1093/femspd/ftae003.
|
| [11] |
Bambach A, Fernandes MP, Ghosh A, et al. Goa1p of Candida albicans localizes to the mitochondria during stress and is required for mitochondrial function and virulence[J]. Eukaryot Cell, 2009,8(11):1706⁃1720. doi: 10.1128/EC.00066⁃09.
|
| [12] |
Chen H, Calderone R, Sun N, et al. Caloric restriction restores the chronological life span of the Goa1 null mutant of Candida albicans in spite of high cell levels of ROS[J]. Fungal Genet Biol, 2012,49(12):1023⁃1032. doi: 10.1016/j.fgb.2012.09.007.
|
| [13] |
Li D, Chen H, Florentino A, et al. Enzymatic dysfunction of mitochondrial complex I of the Candida albicans goa1 mutant is associated with increased reactive oxidants and cell death[J]. Eukaryot Cell, 2011,10(5):672⁃682. doi: 10.1128/EC.00303⁃10.
|
| [14] |
Sun N, Fonzi W, Chen H, et al. Azole susceptibility and transcriptome profiling in Candida albicans mitochondrial electron transport chain complex I mutants[J]. Antimicrob Agents Chemother, 2013,57(1):532⁃542. doi: 10.1128/AAC. 01520⁃12.
|
| [15] |
She X, Zhang L, Chen H, et al. Cell surface changes in the Candida albicans mitochondrial mutant goa1Δ are associated with reduced recognition by innate immune cells[J]. Cell Microbiol, 2013,15(9):1572⁃1584. doi: 10.1111/cmi.12135.
|
| [16] |
Olivier FAB, Hilsenstein V, Weerasinghe H, et al. The escape of Candida albicans from macrophages is enabled by the fungal toxin candidalysin and two host cell death pathways[J]. Cell Rep, 2022,40(12):111374. doi: 10.1016/j.celrep.2022.111374.
|
| [17] |
König A, Hube B, Kasper L. The dual function of the fungal toxin candidalysin during Candida albicans⁃macrophage interaction and virulence[J]. Toxins (Basel), 2020,12(8). doi: 10.3390/toxins12080469.
|
| [18] |
Yang J, Ma G, Li Y, et al. Resistance and virulence genes characteristic of a South Asia Clade (I) Candida auris strain isolated from blood in Beijing[J]. Clinics (Sao Paulo), 2024,79:100497. doi: 10.1016/j.clinsp.2024.100497.
|