中华皮肤科杂志 ›› 2025, Vol. 58 ›› Issue (9): 797-800.doi: 10.35541/cjd.20250004
张成锋,金尚霖
收稿日期:
2025-01-06
修回日期:
2025-03-15
发布日期:
2025-09-01
通讯作者:
张成锋
E-mail:e3dangdang@hotmail.com
基金资助:
Zhang Chengfeng, Jin Shanglin
Received:
2025-01-06
Revised:
2025-03-15
Published:
2025-09-01
Contact:
Zhang Chengfeng
E-mail:e3dangdang@hotmail.com
Supported by:
摘要: 【摘要】 黄褐斑的病因和发病机制尚未完全明了。本文回顾近年来黄褐斑的研究进展,探讨光老化、皮肤屏障功能受损、肥大细胞激活、性激素波动及昼夜节律紊乱等在黄褐斑发病中的作用,为黄褐斑的临床防治提供新方向。随着对黄褐斑发病机制的深入理解,未来的治疗策略有望从单纯的色素沉着治疗转向综合性的抗光老化治疗和皮肤修复。
张成锋 金尚霖. 黄褐斑发病机制与临床对策的新认识[J]. 中华皮肤科杂志, 2025,58(9):797-800. doi:10.35541/cjd.20250004
Zhang Chengfeng, Jin Shanglin. New insights into the pathogenesis and clinical therapeutic strategies of melasma[J]. Chinese Journal of Dermatology, 2025, 58(9): 797-800.doi:10.35541/cjd.20250004
[1] | Sarkar R, Bansal A, Ailawadi P. Future therapies in melasma: what lies ahead?[J]. Indian J Dermatol Venereol Leprol, 2020,86(1):8⁃17. doi: 10.4103/ijdvl.IJDVL_633_18. |
[2] | Jo JY, Chae SJ, Ryu HJ. Update on melasma treatments[J]. Ann Dermatol, 2024,36(3):125⁃134. doi: 10.5021/ad.23.133. |
[3] | Chang CC, Wang YJ, Huang L, et al. Photoaging features of melasma: an in vivo layered and quantitative analysis using computer⁃aided detection of cellular resolution full⁃field optical coherence tomography[J]. J Eur Acad Dermatol Venereol, 2024,38(10):e870⁃e873. doi: 10.1111/jdv.19971. |
[4] | Hara Y, Shibata T. Characteristics of dermal vascularity in melasma and solar lentigo[J]. Photodermatol Photoimmunol Photomed, 2024,40(2):e12953. doi: 10.1111/phpp.12953. |
[5] | Ali L, Al Niaimi F. Pathogenesis of melasma explained[J]. Int J Dermatol, 2025,doi: 10.1111/ijd.17718. |
[6] | Kang HY, Bahadoran P, Suzuki I, et al. In vivo reflectance confocal microscopy detects pigmentary changes in melasma at a cellular level resolution[J]. Exp Dermatol, 2010,19(8):e228⁃e233. doi: 10.1111/j.1600⁃0625.2009.01057.x. |
[7] | Pain S, Berthélémy N, Naudin C, et al. Understanding solar skin elastosis⁃cause and treatment[J]. J Cosmet Sci, 2018,69(3):175⁃185. |
[8] | Kim M, Kim SM, Kwon S, et al. Senescent fibroblasts in melasma pathophysiology[J]. Exp Dermatol, 2019,28(6):719⁃722. doi: 10.1111/exd.13814. |
[9] | Espósito A, Brianezi G, Miot L, et al. Fibroblast morphology, growth rate and gene expression in facial melasma[J]. An Bras Dermatol, 2022,97(5):575⁃582. doi: 10.1016/j.abd.2021.09.012. |
[10] | Kim Y, Kang B, Kim JC, et al. Senescent fibroblast⁃derived GDF15 induces skin pigmentation[J]. J Invest Dermatol, 2020,140(12):2478⁃2486. doi: 10.1016/j.jid.2020.04.016. |
[11] | 中国中西医结合学会皮肤性病专业委员会色素病学组, 中华医学会皮肤性病学分会白癜风研究中心, 中国医师协会皮肤科医师分会色素病工作组. 中国黄褐斑诊疗专家共识(2021版)[J]. 中华皮肤科杂志, 2021,54(2):110⁃115. doi: 10.35541/cjd.20200900. |
[12] | Lee DJ, Lee J, Ha J, et al. Defective barrier function in melasma skin[J]. J Eur Acad Dermatol Venereol, 2012,26(12):1533⁃1537. doi: 10.1111/j.1468⁃3083.2011.04337.x. |
[13] | Castanedo⁃Cázares JP, Cortés⁃García JD, Pérez⁃Coronado G, et al. Skin barrier function and its relationship with IL⁃17, IL⁃33, and filaggrin in malar melasma[J]. Am J Dermatopathol, 2023,45(5):300⁃305. doi: 10.1097/DAD.0000000000002418. |
[14] | Kang HY, Suzuki I, Lee DJ, et al. Transcriptional profiling shows altered expression of wnt pathway⁃ and lipid metabolism⁃related genes as well as melanogenesis⁃related genes in melasma[J]. J Invest Dermatol, 2011,131(8):1692⁃1700. doi: 10.1038/jid. 2011.109. |
[15] | Xu J, Lu H, Luo H, et al. Tape stripping and lipidomics reveal skin surface lipid abnormity in female melasma[J]. Pigment Cell Melanoma Res, 2021,34(6):1105⁃1111. doi: 10.1111/pcmr.12984. |
[16] | Örenay ÖM, Sarıfakıoğlu E, Gülekon A. Evaluation of perilipin 2 and melanocortin 5 receptor serum levels with sebogenesis in acne vulgaris patients[J]. Acta Dermatovenerol Alp Pannonica Adriat, 2021,30(1):7⁃9. |
[17] | Abdel⁃Naser MB, Seltmann H, Zouboulis CC. SZ95 sebocytes induce epidermal melanocyte dendricity and proliferation in vitro[J]. Exp Dermatol, 2012,21(5):393⁃395. doi: 10.1111/j.1600⁃0625.2012.01468.x. |
[18] | Abdel⁃Naser MB, Nikolakis G, Zouboulis CC. Preservation of epidermal melanocyte integrity in an ex vivo co⁃culture skin model with sebocytes[J]. Exp Dermatol, 2023,32(7):1063⁃1071. doi: 10.1111/exd.14813. |
[19] | Flori E, Mastrofrancesco A, Mosca S, et al. Sebocytes contribute to melasma onset[J]. iScience, 2022,25(3):103871. doi: 10. 1016/j.isci.2022.103871. |
[20] | Kwon SH, Hwang YJ, Lee SK, et al. Heterogeneous pathology of melasma and its clinical implications[J]. Int J Mol Sci, 2016,17(6):824. doi: 10.3390/ijms17060824. |
[21] | Inomata S, Matsunaga Y, Amano S, et al. Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B⁃exposed hairless mouse[J]. J Invest Dermatol, 2003,120(1):128⁃134. doi: 10.1046/j. 1523⁃1747.2003.12021.x. |
[22] | Na JI, Choi SY, Yang SH, et al. Effect of tranexamic acid on melasma: a clinical trial with histological evaluation[J]. J Eur Acad Dermatol Venereol, 2013,27(8):1035⁃1039. doi: 10.1111/j.1468⁃3083.2012.04464.x. |
[23] | Moon HR, Jo SY, Kim HT, et al. Loratadine, an H1 antihistamine, inhibits melanogenesis in human melanocytes[J]. Biomed Res Int, 2019,2019:5971546. doi: 10.1155/2019/5971546. |
[24] | Lee HJ, Park MK, Lee EJ, et al. Histamine receptor 2⁃mediated growth⁃differentiation factor⁃15 expression is involved in histamine⁃induced melanogenesis[J]. Int J Biochem Cell Biol, 2012,44(12):2124⁃2128. doi: 10.1016/j.biocel.2012.08.020. |
[25] | Grimbaldeston MA, Simpson A, Finlay⁃Jones JJ, et al. The effect of ultraviolet radiation exposure on the prevalence of mast cells in human skin[J]. Br J Dermatol, 2003,148(2):300⁃306. doi: 10.1046/j.1365⁃2133.2003.05113.x. |
[26] | Korhonen J, Siiskonen H, Haimakainen S, et al. Expression of mast cell tryptase and immunoglobulin E is increased in cutaneous photodamage: implications for carcinogenesis[J]. J Dermatolog Treat, 2024,35(1):2307488. doi: 10.1080/09546634. 2024.2307488. |
[27] | Parkinson LG, Toro A, Zhao H, et al. Granzyme B mediates both direct and indirect cleavage of extracellular matrix in skin after chronic low⁃dose ultraviolet light irradiation[J]. Aging Cell, 2015,14(1):67⁃77. doi: 10.1111/acel.12298. |
[28] | Crivellato E, Nico B, Ribatti D. Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis[J]. Cancer Lett, 2008,269(1):1⁃6. doi: 10.1016/j.canlet.2008.03.031. |
[29] | Dias J, Lima PB, Cassiano DP, et al. Oral ketotifen associated with famotidine for the treatment of facial melasma: a randomized, double⁃blind, placebo⁃controlled trial[J]. J Eur Acad Dermatol Venereol, 2022,36(2):e123⁃e125. doi: 10.1111/jdv.17692. |
[30] | Espósito A, Cassiano DP, da Silva CN, et al. Update on melasma⁃part Ⅰ: pathogenesis[J]. Dermatol Ther (Heidelb), 2022,12(9): 1967⁃1988. doi: 10.1007/s13555⁃022⁃00779⁃x. |
[31] | Filoni A, Mariano M, Cameli N. Melasma: how hormones can modulate skin pigmentation[J]. J Cosmet Dermatol, 2019,18(2):458⁃463. doi: 10.1111/jocd.12877. |
[32] | Sarkar R, Jain RK, Puri P. Melasma in Indian males[J]. Dermatol Surg, 2003,29(2):204. |
[33] | Panasiti V, Barone M, Coppola R, et al. Expression of estrogen receptors in Spitz and Reed nevi[J]. Ital J Dermatol Venerol, 2021,156(3):378⁃383. doi: 10.23736/S2784⁃8671.19.06376⁃4. |
[34] | Sun M, Xie HF, Tang Y, et al. G protein⁃coupled estrogen receptor enhances melanogenesis via cAMP⁃protein kinase (PKA) by upregulating microphthalmia⁃related transcription factor⁃tyrosinase in melanoma[J]. J Steroid Biochem Mol Biol, 2017,165(Pt B):236⁃246. doi: 10.1016/j.jsbmb.2016.06.012. |
[35] | Wiedemann C, Nägele U, Schramm G, et al. Inhibitory effects of progestogens on the estrogen stimulation of melanocytes in vitro[J]. Contraception, 2009,80(3):292⁃298. doi: 10.1016/j.contraception.2009.03.005. |
[36] | Tadokoro T, Rouzaud F, Itami S, et al. The inhibitory effect of androgen and sex⁃hormone⁃binding globulin on the intracellular cAMP level and tyrosinase activity of normal human melanocytes[J]. Pigment Cell Res, 2003,16(3):190⁃197. doi: 10.1034/j.1600⁃0749.2003.00019.x. |
[37] | He X, Chen L, Jin S, et al. Correlation of biorhythmic disorders with melasma: a cross⁃sectional survey[J]. J Am Acad Dermatol, 2025,92(1):185⁃187. doi: 10.1016/j.jaad.2024.09.050. |
[38] | Sarkar S, Porter KI, Dakup PP, et al. Circadian clock protein BMAL1 regulates melanogenesis through MITF in melanoma cells[J]. Pigment Cell Melanoma Res, 2021,34(5):955⁃965. doi: 10.1111/pcmr.12998. |
[39] | Hardman JA, Tobin DJ, Haslam IS, et al. The peripheral clock regulates human pigmentation[J]. J Invest Dermatol, 2015,135(4):1053⁃1064. doi: 10.1038/jid.2014.442. |
[40] | Sampaio Xerfan EM, Andersen ML, Tomimori J, et al. Melasma and the possible interaction with sleep quality[J]. J Clin Aesthet Dermatol, 2020,13(11):12. |
[41] | He X, Jin S, Dai X, et al. The emerging role of visible light in melanocyte biology and skin pigmentary disorders: friend or foe?[J]. J Clin Med, 2023,12(23):7488. doi: 10.3390/jcm12237488. |
[42] | Fonken LK, Nelson RJ. The effects of light at night on circadian clocks and metabolism[J]. Endocr Rev, 2014,35(4):648⁃670. doi: 10.1210/er.2013⁃1051. |
[1] | 段博林 李倩雯 乐悦 耿朦朦 罗龙飞 雷铁池. 芦丁抑制紫外线照射诱导的真皮成纤维细胞衰老和鼠耳皮肤黑素生成[J]. 中华皮肤科杂志, 2025, 58(9): 801-807. |
[2] | 徐中奕 邢小雪 董雅琦 张成锋 项蕾红. 上海市某三甲医院黄褐斑患者254例临床特征及疗效的回顾性分析[J]. 中华皮肤科杂志, 2025, 58(9): 808-815. |
[3] | 何沐阳 金尚霖 张成锋. 性激素在黄褐斑发病中的作用及机制[J]. 中华皮肤科杂志, 2025, 58(9): 863-867. |
[4] | 王琛 丁玥岑 董雅琦 张成锋 项蕾红 徐中奕. 真皮获得性斑状色素沉着诊疗进展[J]. 中华皮肤科杂志, 2025, 58(9): 873-877. |
[5] | 姜子琪 钟菊丹 陈廷巧 陈瑾. 黄褐斑发病机制及治疗研究进展[J]. 中华皮肤科杂志, 2025, 58(9): 868-872. |
[6] | 钟洁敏 李薇 张淑娟 杨艳 薛如君 李欣怡 柯娅楠 陈晓吟 陈荃. 纳米微针与超声波导入氨甲环酸治疗黄褐斑的疗效与安全性比较:一项随机对照研究[J]. 中华皮肤科杂志, 2025, 58(9): 829-833. |
[7] | 周妙妮 盛安琪 傅丽芳 金嵘 许文 尉晓冬 许爱娥. 茶多酚抗氧化凝胶联合窄谱中波紫外线治疗白癜风的疗效及安全性单中心随机对照试验[J]. 中华皮肤科杂志, 2025, 58(9): 834-838. |
[8] | 王奇飒 赵文玲 韩秀峰 马焕跃 石海涛 马琳 徐哲. 婴幼儿舒缓特护霜改善婴儿期特应性皮炎复发的功效性研究:一项随机对照试验[J]. 中华皮肤科杂志, 2025, 58(10): 975-979. |
[9] | 孟晓 王俊慧 颜志芳 王宁 崔炳南. 体视学测量在中药面膜治疗单纯色素型黄褐斑中的疗效评价研究[J]. 中华皮肤科杂志, 2025, 58(1): 53-59. |
[10] | 艾芳婷 孙紫君 苗国英 姚春霞. 钙敏感受体在老年皮肤病理生理中的作用研究进展[J]. 中华皮肤科杂志, 2025, 58(1): 76-79. |
[11] | 张嘉琪 吴凡 韩雨晴 刘琦 盘瑶. 多光子显微镜在皮肤科中的应用[J]. 中华皮肤科杂志, 2024, 57(9): 857-862. |
[12] | 姜倩 王玥 田黎明 夏萍 陈柳青. 反射式共聚焦显微镜联合光学相干断层扫描在黄褐斑组织学改变观察及疗效评估中的应用分析[J]. 中华皮肤科杂志, 2024, 57(7): 623-631. |
[13] | Michèle Verschoore 牛悦青 Stéphane Commo Léopold Muller 魏宇昊 甄雅贤 刘玮. [开放获取] 中华医学会-欧莱雅中国人健康皮肤/毛发研究项目成果总结——皮肤篇[J]. 中华皮肤科杂志, 2024, 57(5): 464-467. |
[14] | 马铜川 邓婷月 肖风丽. 吸烟与特应性皮炎相关性研究进展[J]. 中华皮肤科杂志, 2024, 0(3): 20220793-e20220793. |
[15] | 刘莹莹 邓丹琪. 皮肤微生物与皮肤肿瘤相关性的研究进展[J]. 中华皮肤科杂志, 2024, 0(3): 20230241-e20230241. |
|