[1] |
Park J, Moon H, Hong S. Recent advances in melanin⁃like nanomaterials in biomedical applications: a mini review[J]. Biomater Res, 2019,23:24. doi: 10.1186/s40824⁃019⁃0175⁃9.
|
[2] |
Lee H, Dellatore SM, Miller WM, et al. Mussel⁃inspired surface chemistry for multifunctional coatings[J]. Science, 2007,318(5849):426⁃430. doi: 10.1126/science.1147241.
|
[3] |
Wei Y, Nie Y, Han Z, et al. Au@polydopamine nanoparticles/tocilizumab composite as efficient scavengers of oxygen free radicals for improving the treatment of rheumatoid arthritis[J]. Mater Sci Eng C Mater Biol Appl, 2021,118:111434. doi: 10.1016/j.msec.2020.111434.
|
[4] |
Bao X, Zhao J, Sun J, et al. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease[J]. ACS Nano, 2018,12(9):8882⁃8892. doi: 10.1021/acsnano.8b04022.
|
[5] |
Zhang Y, Ren X, Wang Y, et al. Targeting ferroptosis by polydopamine nanoparticles protects heart against ischemia/reperfusion injury[J]. ACS Appl Mater Interfaces, 2021,13(45):53671⁃53682. doi: 10.1021/acsami.1c18061.
|
[6] |
Lou X, Hu Y, Zhang H, et al. Polydopamine nanoparticles attenuate retina ganglion cell degeneration and restore visual function after optic nerve injury[J]. J Nanobiotechnology, 2021,19(1):436. doi: 10.1186/s12951⁃021⁃01199⁃3.
|
[7] |
Moreiras H, Pereira F, Neto MV, et al. The exocyst is required for melanin exocytosis from melanocytes and transfer to keratinocytes[J]. Pigment Cell Melanoma Res, 2020,33(2):366⁃371. doi: 10.1111/pcmr.12840.
|
[8] |
Huang Y, Li Y, Hu Z, et al. Mimicking melanosomes: polydopamine nanoparticles as artificial microparasols[J]. ACS Cent Sci, 2017,3(6):564⁃569. doi: 10.1021/acscentsci.6b00230.
|
[9] |
Hu J, Yang L, Yang P, et al. Polydopamine free radical scavengers[J]. Biomater Sci, 2020,8(18):4940⁃4950. doi: 10.1039/d0bm 01070g.
|
[10] |
Zhao H, Zeng Z, Liu L, et al. Polydopamine nanoparticles for the treatment of acute inflammation⁃induced injury[J]. Nanoscale, 2018,10(15):6981⁃6991. doi: 10.1039/c8nr00838h.
|
[11] |
Zhong G, Yang X, Jiang X, et al. Dopamine⁃melanin nanoparticles scavenge reactive oxygen and nitrogen species and activate autophagy for osteoarthritis therapy[J]. Nanoscale, 2019,11(24):11605⁃11616. doi: 10.1039/c9nr03060c.
|
[12] |
Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chem Rev, 2014,114(9):5057⁃5115. doi: 10.1021/cr400407a.
|
[13] |
Jing Y, Deng Z, Yang X, et al. Ultrathin two⁃dimensional polydopamine nanosheets for multiple free radical scavenging and wound healing[J]. Chem Commun(Camb), 2020,56(74):10875⁃10878. doi: 10.1039/d0cc02888f.
|
[14] |
Fu Y, Zhang J, Wang Y, et al. Reduced polydopamine nanoparticles incorporated oxidized dextran/chitosan hybrid hydrogels with enhanced antioxidative and antibacterial properties for accelerated wound healing[J]. Carbohydr Polym, 2021,257:117598. doi: 10.1016/j.carbpol.2020.117598.
|
[15] |
Qin P, Meng Y, Yang Y, et al. Mesoporous polydopamine nanoparticles carrying peptide RL⁃QN15 show potential for skin wound therapy[J]. J Nanobiotechnology, 2021,19(1):309. doi: 10.1186/s12951⁃021⁃01051⁃8.
|
[16] |
Wang Y, Xiao D, Quan L, et al. Mussel⁃inspired adhesive gelatin⁃polyacrylamide hydrogel wound dressing loaded with tetracycline hydrochloride to enhance complete skin regeneration[J]. Soft Matter, 2022,18(3):662⁃674. doi: 10.1039/d1sm01373d.
|
[17] |
Xu X, Liu X, Tan L, et al. Controlled⁃temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine⁃assisted Au⁃hydroxyapatite nanorods[J]. Acta Biomater, 2018,77:352⁃364. doi: 10.1016/j.actbio.2018.07.030.
|
[18] |
Zhou Y, Qian Y, Wang J, et al. Bioinspired lignin⁃polydopamine nanocapsules with strong bioadhesion for long⁃acting and high⁃performance natural sunscreens[J]. Biomacromolecules, 2020,21(8):3231⁃3241. doi: 10.1021/acs.biomac.0c00696.
|
[19] |
Wang C, Wang D, Dai T, et al. Skin pigmentation⁃inspired polydopamine sunscreens[J]. Advanced Functional Materials, 2018, 28(33):1802127. doi: 10.1002/adfm.201802127.
|
[20] |
Tang Z, Miao Y, Zhao J, et al. Mussel⁃inspired biocompatible polydopamine/carboxymethyl cellulose/polyacrylic acid adhesive hydrogels with UV⁃shielding capacity[J]. Cellulose(Lond), 2021,28(3):1527⁃1540. doi: 10.1007/s10570⁃020⁃03596⁃7.
|
[21] |
Wang X, Zhang J, Wang Y, et al. Multi⁃responsive photothermal⁃chemotherapy with drug⁃loaded melanin⁃like nanoparticles for synergetic tumor ablation[J]. Biomaterials, 2016,81:114⁃124. doi: 10.1016/j.biomaterials.2015.11.037.
|
[22] |
Liu M, Peng Y, Nie Y, et al. Co⁃delivery of doxorubicin and DNAzyme using ZnO@polydopamine core⁃shell nanocomposites for chemo/gene/photothermal therapy[J]. Acta Biomater, 2020,110:242⁃253. doi: 10.1016/j.actbio.2020.04.041.
|
[23] |
Chen W, Qin M, Chen X, et al. Combining photothermal therapy and immunotherapy against melanoma by polydopamine⁃coated Al2O3 nanoparticles[J]. Theranostics, 2018,8(8):2229⁃2241. doi: 10.7150/thno.24073.
|
[24] |
Sun MC, Xu XL, Du Y, et al. Biomimetic melanosomes promote orientation⁃selective delivery and melanocyte pigmentation in the H2O2⁃induced vitiligo mouse model[J]. ACS Nano, 2021,15(11):17361⁃17374. doi: 10.1021/acsnano.1c05321.
|