| [1] | 陈维毅. 2016~2018年中国生物力学研究进展[J]. 医用生物力学, 2018,33(6):477⁃482. doi: 10.16156/j.1004⁃7220.2018.06. 001. | 
																													
																						| [2] | van Oosten A, Chen X, Chin L, et al. Emergence of tissue⁃like mechanics from fibrous networks confined by close⁃packed cells[J]. Nature, 2019,573(7772):96⁃101. doi: 10.1038/s41586⁃019⁃1516⁃5. | 
																													
																						| [3] | Davidson PM, Fedorchak GR, Mondésert⁃Deveraux S, et al. High⁃throughput microfluidic micropipette aspiration device to probe time⁃scale dependent nuclear mechanics in intact cells[J]. Lab Chip, 2019,19(21):3652⁃3663. doi: 10.1039/c9lc00444k. | 
																													
																						| [4] | Gupta M, Doss B, Lim CT, et al. Single cell rigidity sensing: a complex relationship between focal adhesion dynamics and large⁃scale actin cytoskeleton remodeling[J]. Cell Adh Migr, 2016,10(5):554⁃567. doi: 10.1080/19336918.2016.1173800. | 
																													
																						| [5] | Rübsam M, Broussard JA, Wickström SA, et al. Adherens junctions and desmosomes coordinate mechanics and signaling to orchestrate tissue morphogenesis and function: an evolutionary perspective[J/OL]. Cold Spring Harb Perspect Biol, 2018,10(11):a029207[2020⁃05⁃01]. https://cshperspectives.cshlp.org/content/10/11/a029207.long. doi: 10.1101/cshperspect.a029207. | 
																													
																						| [6] | Goldmann WH. Intermediate filaments and cellular mechanics[J]. Cell Biol Int, 2018,42(2):132⁃138. doi: 10.1002/cbin.10879. | 
																													
																						| [7] | Zaniboni MC, Samorano LP, Orfali RL, et al. Skin barrier in atopic dermatitis: beyond filaggrin[J]. An Bras Dermatol, 2016,91(4):472⁃478. doi: 10.1590/abd1806⁃4841.20164412. | 
																													
																						| [8] | Turcan I, Jonkman MF. Blistering disease: insight from the hemidesmosome and other components of the dermal⁃epidermal junction[J]. Cell Tissue Res, 2015,360(3):545⁃569. doi: 10. 1007/s00441⁃014⁃2021⁃7. | 
																													
																						| [9] | Hsu CK, Lin HH, Harn HI, et al. Mechanical forces in skin disorders[J]. J Dermatol Sci, 2018,90(3):232⁃240. doi: 10.1111/ j.1524⁃475X.2012.00766.x. | 
																													
																						| [10] | Huang C, Du Y, Nabzdyk CS, et al. Regeneration of hair and other skin appendages: a microenvironment⁃centric view[J]. Wound Repair Regen, 2016,24(5):759⁃766. doi: 10.1111/wrr. 12451. | 
																													
																						| [11] | Le HQ, Ghatak S, Yeung CY, et al. Mechanical regulation of transcription controls polycomb⁃mediated gene silencing during lineage commitment[J]. Nat Cell Biol, 2016,18(8):864⁃875. doi: 10.1038/ncb3387. | 
																													
																						| [12] | Jiang C, Javed A, Kaiser L, et al. Mechanochemical control of epidermal stem cell divisions by B⁃plexins[J]. Nat Commun, 2021,12(1):1308. doi: 10.1038/s41467⁃021⁃21513⁃9. | 
																													
																						| [13] | Dias Gomes M, Letzian S, Saynisch M, et al. Polarity signaling ensures epidermal homeostasis by coupling cellular mechanics and genomic integrity[J]. Nat Commun, 2019,10(1):3362. doi: 10.1038/s41467⁃019⁃11325⁃3. | 
																													
																						| [14] | Sun Z, Guo SS, Fässler R. Integrin⁃mediated mechanotrans⁃duction[J]. J Cell Biol, 2016,215(4):445⁃456. doi: 10.1083/jcb.201609037. | 
																													
																						| [15] | Lembong J, Sabass B, Stone HA. Calcium oscillations in wounded fibroblast monolayers are spatially regulated through substrate mechanics[J]. Phys Biol, 2017,14(4):045006. doi: 10.1088/1478⁃3975/aa6b67. | 
																													
																						| [16] | Hsu CK, Lin HH, Harn HI, et al. Caveolin⁃1 controls hyperresponsiveness to mechanical stimuli and fibrogenesis⁃associated RUNX2 activation in keloid fibroblasts[J]. J Invest Dermatol, 2018,138(1):208⁃218. doi: 10.1016/j.jid.2017.05.041. | 
																													
																						| [17] | Purnell CA, Gart MS, Buganza⁃Tepole A, et al. Determining the differential effects of stretch and growth in tissue⁃expanded skin: combining isogeometric analysis and continuum mechanics in a porcine model[J]. Dermatol Surg, 2018,44(1):48⁃52. doi: 10. 1097/DSS.0000000000001228. | 
																													
																						| [18] | Sree VD, Rausch MK, Tepole AB. Linking microvascular collapse to tissue hypoxia in a multiscale model of pressure ulcer initiation[J]. Biomech Model Mechanobiol, 2019,18(6):1947⁃1964. doi: 10.1007/s10237⁃019⁃01187⁃5. | 
																													
																						| [19] | Koyama T, Kobayashi K, Hama T, et al. Standardized scalp massage results in increased hair thickness by inducing stretching forces to dermal papilla cells in the subcutaneous tissue[J]. Eplasty, 2016,16:e8. | 
																													
																						| [20] | Li H, Fan L, Zhu S, et al. Epilation induces hair and skin pigmentation through an EDN3/EDNRB⁃dependent regenerative response of melanocyte stem cells[J]. Sci Rep, 2017,7(1):7272. doi: 10.1038/s41598⁃017⁃07683⁃x. | 
																													
																						| [21] | Chu SY, Chou CH, Huang HD, et al. Mechanical stretch induces hair regeneration through the alternative activation of macrophages[J]. Nat Commun, 2019,10(1):1524. doi: 10.1038/s41467⁃019⁃09402⁃8. | 
																													
																						| [22] | Tellez⁃Segura R. Involvement of mechanical stress in androgenetic alopecia[J]. Int J Trichology, 2015,7(3):95⁃99. doi: 10.1038/s41467⁃019⁃09402⁃8. | 
																													
																						| [23] | Wagner RY, Luciani F, Cario⁃André M, et al. Altered E⁃cadherin levels and distribution in melanocytes precede clinical manifestations of vitiligo[J]. J Invest Dermatol, 2015,135(7):1810⁃1819. doi: 10.1038/jid.2015.25. | 
																													
																						| [24] | Manga P, Elbuluk N, Orlow SJ. Recent advances in under⁃standing vitiligo[J]. F1000Res, 2016,5:F1000 Faculty Rev⁃2234. doi: 10.12688/f1000 research.8976.1. | 
																													
																						| [25] | Hsu CK, Lin HH, Harn HI, et al. Mechanical forces in skin disorders[J]. J Dermatol Sci, 2018,90(3):232⁃240. doi: 10. 1016/j.jdermsci.2018.03.004. | 
																													
																						| [26] | Brás MM, Radmacher M, Sousa SR, et al. Melanoma in the eyes of mechanobiology[J]. Front Cell Dev Biol, 2020,8:54. doi: 10.3389/fcell.2020.00054. | 
																													
																						| [27] | Ogawa R, Okai K, Tokumura F, et al. The relationship between skin stretching/contraction and pathologic scarring: the important role of mechanical forces in keloid generation[J]. Wound Repair Regen, 2012,20(2):149⁃157. doi: 10.1111/j.1524⁃475X. 2012.00766.x. | 
																													
																						| [28] | Huang C, Holfeld J, Schaden W, et al. Mechanotherapy: revisiting physical therapy and recruiting mechanobiology for a new era in medicine[J]. Trends Mol Med, 2013,19(9):555⁃564. doi: 10.1016/j.molmed.2013.05.005. | 
																													
																						| [29] | Moortgat P, Anthonissen M, Van Daele U, et al. The effects of shock wave therapy applied on hypertrophic burn scars: a randomised controlled trial[J]. Scars Burn Heal, 2020,6:205 9513120975624. doi: 10.1177/2059513120975624. | 
																													
																						| [30] | Caberlotto E, Ruiz L, Miller Z, et al. Effects of a skin⁃massaging device on the ex⁃vivo expression of human dermis proteins and in⁃vivo facial wrinkles[J/OL]. PLoS One, 2017,12(3):e0172624[2020⁃12⁃28]. https://journals.plos.org/plosone/article?id=10.1371/ journal.pone.0172624. doi: 10.1371/journal.pone.0172624. |