[1] |
Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective[J]. Artif Intell Med, 2001,23(1):89⁃109. doi: 10.1016/s0933⁃3657(01)00077⁃x.
|
[2] |
Liu Z, Wang X, Ma Y, et al. Artificial intelligence in psoriasis: where we are and where we are going[J]. Exp Dermatol, 2023,32(11):1884⁃1899. doi: 10.1111/exd.14938.
|
[3] |
Hartmann T, Passauer J, Hartmann J, et al. Basic principles of artificial intelligence in dermatology explained using melanoma[J]. J Dtsch Dermatol Ges, 2024,22(3):339⁃347. doi: 10.1111/ddg.15322.
|
[4] |
Zhang J, Zhong F, He K, et al. Recent advancements and perspectives in the diagnosis of skin diseases using machine learning and deep learning: a review[J]. Diagnostics (Basel), 2023,13(23):3506. doi: 10.3390/diagnostics13233506.
|
[5] |
Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future[J]. Stroke Vasc Neurol, 2017,2(4):230⁃243. doi: 10.1136/svn⁃2017⁃000101.
|
[6] |
Mnih V, Kavukcuoglu K, Silver D, et al. Human⁃level control through deep reinforcement learning[J]. Nature, 2015,518(7540):529⁃533. doi: 10.1038/nature14236.
|
[7] |
Krittanawong C, Johnson KW, Rosenson RS, et al. Deep learning for cardiovascular medicine: a practical primer[J]. Eur Heart J, 2019,40(25):2058⁃2073. doi: 10.1093/eurheartj/ehz056.
|
[8] |
Krittanawong C, Zhang H, Wang Z, et al. Artificial intelligence in precision cardiovascular medicine[J]. J Am Coll Cardiol, 2017,69(21):2657⁃2664. doi: 10.1016/j.jacc.2017.03.571.
|
[9] |
Pai VV, Pai RB. Artificial intelligence in dermatology and healthcare: an overview[J]. Indian J Dermatol Venereol Leprol, 2021,87(4):457⁃467. doi: 10.25259/IJDVL_518_19.
|
[10] |
Liaw A, Wiener M. Classification and regression by random forest[J]. R News, 2002, 2(3):18⁃22.
|
[11] |
Du⁃Harpur X, Watt FM, Luscombe NM, et al. What is AI? Applications of artificial intelligence to dermatology[J]. Br J Dermatol, 2020,183(3):423⁃430. doi: 10.1111/bjd.18880.
|
[12] |
Grossarth S, Mosley D, Madden C, et al. Recent advances in melanoma diagnosis and prognosis using machine learning methods[J]. Curr Oncol Rep, 2023,25(6):635⁃645. doi: 10.1007/s11912⁃023⁃01407⁃3.
|
[13] |
Liopyris K, Gregoriou S, Dias J, et al. Artificial intelligence in dermatology: challenges and perspectives[J]. Dermatol Ther (Heidelb), 2022,12(12):2637⁃2651. doi: 10.1007/s13555⁃022⁃00833⁃8.
|
[14] |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist⁃level classification of skin cancer with deep neural networks[J]. Nature, 2017,542(7639):115⁃118. doi: 10.1038/nature21056.
|
[15] |
王诗琪, 刘洁, 朱晨雨, 等. 皮肤科医师与深度卷积神经网络诊断色素痣和脂溢性角化病皮肤镜图像比较[J]. 中华皮肤科杂志, 2018,51(7):486⁃489. doi: 10.3760/cma.j.issn.0412⁃4030.2018.07.002.
|
[16] |
Zhao Z, Wu CM, Zhang S, et al. A novel convolutional neural network for the diagnosis and classification of rosacea: usability study[J]. JMIR Med Inform, 2021,9(3):e23415. doi: 10.2196/23415.
|
[17] |
Zhu X, Zheng B, Cai W, et al. Deep learning⁃based diagnosis models for onychomycosis in dermoscopy[J]. Mycoses, 2022,65(4):466⁃472. doi: 10.1111/myc.13427.
|
[18] |
Achararit P, Manaspon C, Jongwannasiri C, et al. Artificial intelligence⁃based diagnosis of oral lichen planus using deep convolutional neural networks[J]. Eur J Dent, 2023,17(4):1275⁃1282. doi: 10.1055/s⁃0042⁃1760300.
|
[19] |
Gao W, Li M, Wu R, et al. The design and application of an automated microscope developed based on deep learning for fungal detection in dermatology[J]. Mycoses, 2021,64(3):245⁃251. doi: 10.1111/myc.13209.
|
[20] |
朱亚杰, 卢枫, Mahmood Syed Mohammad Nooruddin, 等. 一种基于34层ResNet模型的人工智能软件诊断皮肤病的性能评估[J]. 中华皮肤科杂志, 2023,56(10):948⁃952. doi: 10.35541/cjd.20220925.
|
[21] |
Lee WH, Lee S, Kim J, et al. Measurement of psoriasis⁃affected area with artificial neural network[J]. J Am Acad Dermatol, 2023,88(3):731⁃732. doi: 10.1016/j.jaad.2022.09.035.
|
[22] |
Meienberger N, Anzengruber F, Amruthalingam L, et al. Observer⁃independent assessment of psoriasis⁃affected area using machine learning[J]. J Eur Acad Dermatol Venereol, 2020,34(6):1362⁃1368. doi: 10.1111/jdv.16002.
|
[23] |
Huang K, Wu X, Li Y, et al. Artificial intelligence⁃based psoriasis severity assessment: real⁃world study and application[J]. J Med Internet Res, 2023,25:e44932. doi: 10.2196/44932.
|
[24] |
Lee S, Lee JW, Choe SJ, et al. Clinically applicable deep learning framework for measurement of the extent of hair loss in patients with alopecia areata[J]. JAMA Dermatol, 2020,156(9):1018⁃1020. doi: 10.1001/jamadermatol.2020.2188.
|
[25] |
Lee S, Kim BJ, Lee CH, et al. Topographic phenotypes of alopecia areata and development of a prognostic prediction model and grading system: a cluster analysis[J]. JAMA Dermatol, 2019,155(5):564⁃571. doi: 10.1001/jamadermatol. 2018.5894.
|
[26] |
Maintz L, Welchowski T, Herrmann N, et al. Machine learning⁃based deep phenotyping of atopic dermatitis: severity⁃associated factors in adolescent and adult patients[J]. JAMA Dermatol, 2021,157(12):1414⁃1424. doi: 10.1001/jamadermatol.2021.3668.
|
[27] |
Wan G, Nguyen N, Liu F, et al. Prediction of early⁃stage melanoma recurrence using clinical and histopathologic features[J]. NPJ Precis Oncol, 2022,6(1):79. doi: 10.1038/s41698⁃022⁃00321⁃4.
|
[28] |
Tomalin LE, Kim J, Correa da Rosa J, et al. Early quantification of systemic inflammatory proteins predicts long⁃term treatment response to tofacitinib and etanercept[J]. J Invest Dermatol, 2020,140(5):1026⁃1034. doi: 10.1016/j.jid.2019.09.023.
|
[29] |
Du AX, Ali Z, Ajgeiy KK, et al. Machine learning model for predicting outcomes of biologic therapy in psoriasis[J]. J Am Acad Dermatol, 2023,88(6):1364⁃1367. doi: 10.1016/j.jaad.2022. 12.046.
|
[30] |
Meneses J, García⁃Prada JC, Castejón C, et al. Automatic Device for Skin Biopsy[C]//Carbone G, Ceccarelli M, Pisla D. New Trends in Medical and Service Robotics. Cham: Springer International Publishing, 2019:54⁃61.
|
[31] |
Rose PT, Nusbaum B. Robotic hair restoration[J]. Dermatol Clin, 2014,32(1):97⁃107. doi: 10.1016/j.det.2013.09.008.
|
[32] |
Zhu Y, Yang K, Lin JM, et al. A Comparative study on the application of robotic hair restoration technology versus traditional follicular unit excision in male androgenetic alopecia[J]. J Cosmet Dermatol, 2024. doi: 10.1111/jocd.16554.
|
[33] |
Smak Gregoor AM, Sangers TE, Bakker LJ, et al. An artificial intelligence based app for skin cancer detection evaluated in a population based setting[J]. NPJ Digit Med, 2023,6(1):90. doi: 10.1038/s41746⁃023⁃00831⁃w.
|
[34] |
沈长兵, 李承旭, 沈雪, 等. 基于皮肤影像大数据的皮肤病人工智能系列产品研发与应用[J]. 中国数字医学, 2019,14(3):22⁃25. doi: 10.3969/j.issn.1673⁃7571.2019.03.006.
|
[35] |
Luo N, Zhong X, Su L, et al. Artificial intelligence⁃assisted dermatology diagnosis: from unimodal to multimodal[J]. Comput Biol Med, 2023,165:107413. doi: 10.1016/j.compbiomed.2023. 107413.
|
[36] |
Jeong HK, Park C, Henao R, et al. Deep learning in dermatology: a systematic review of current approaches, outcomes, and limitations[J]. JID Innov, 2023,3(1):100150. doi: 10.1016/j.xjidi.2022.100150.
|
[37] |
Ibraheim MK, Gupta R, Gardner JM, et al. Artificial intelligence in dermatopathology: an analysis of its practical application[J]. Dermatopathology (Basel), 2023,10(1):93⁃94. doi: 10.3390/dermatopathology10010014.
|
[38] |
Willem T, Krammer S, Böhm AS, et al. Risks and benefits of dermatological machine learning health care applications⁃an overview and ethical analysis[J]. J Eur Acad Dermatol Venereol, 2022,36(9):1660⁃1668. doi: 10.1111/jdv.18192.
|
[39] |
李昂, 崔勇. 人工智能在皮肤科中的应用[J]. 中国皮肤性病学杂志, 2022,36(8):872⁃876. doi: 10.13735/j.cjdv.1001⁃7089. 202110141.
|