[1] |
Rodríguez Bandera AI, Sebaratnam DF, Wargon O, et al. Infantile hemangioma. Part 1: epidemiology, pathogenesis, clinical presentation and assessment[J]. J Am Acad Dermatol, 2021,85(6):1379⁃1392. doi: 10.1016/j.jaad.2021.08.019.
|
[2] |
Ji Y, Chen S, Yang K, et al. Efficacy and safety of propranolol vs atenolol in infants with problematic infantile hemangiomas: a randomized clinical trial[J]. JAMA Otolaryngol Head Neck Surg, 2021,147(7):599⁃607. doi: 10.1001/jamaoto.2021.0454.
|
[3] |
Ji Y, Chen S, Xu C, et al. The use of propranolol in the treatment of infantile haemangiomas: an update on potential mechanisms of action[J]. Br J Dermatol, 2015,172(1):24⁃32. doi: 10.1111/bjd.13388.
|
[4] |
杨开颖, 龚雪, 邱桐, 等. 糖酵解关键酶PFKFB3对婴幼儿血管瘤内皮细胞增殖、迁移及凋亡的影响[J]. 中华皮肤科杂志, 2023,56(4):320⁃324. doi: 10.35541/cjd.20220463.
|
[5] |
Yang K, Qiu T, Zhou J, et al. Blockage of glycolysis by targeting PFKFB3 suppresses the development of infantile hemangioma[J]. J Transl Med, 2023,21(1):85. doi: 10.1186/s12967⁃023⁃03932⁃y.
|
[6] |
Yang K, Zhang X, Chen L, et al. Microarray expression profile of mRNAs and long noncoding RNAs and the potential role of PFK⁃1 in infantile hemangioma[J]. Cell Div, 2021,16(1):1. doi: 10.1186/s13008⁃020⁃00069⁃y.
|
[7] |
Yang E, Wang X, Huang S, et al. Shikonin reverses pyruvate kinase isoform M2⁃mediated propranolol resistance in infantile hemangioma through reactive oxygen species⁃induced autophagic dysfunction[J]. Cancer Sci, 2023,114(3):806⁃821. doi: 10.1111/cas.15649.
|
[8] |
杨开颖, 周江元, 龚雪, 等. 糖酵解通路关键酶在婴幼儿血管瘤中的表达及其作用[J]. 中华小儿外科杂志, 2022,43(11):1007⁃1012. doi: 10.3760/cma.j.cn421158⁃20210513⁃00237.
|
[9] |
Chen J, Wu D, Dong Z, et al. The expression and role of glycolysis⁃associated molecules in infantile hemangioma[J]. Life Sci, 2020,259:118215. doi: 10.1016/j.lfs.2020.118215.
|
[10] |
杨开颖, 邱桐, 龚雪, 等. 白藜芦醇对婴儿血管瘤内皮细胞活性的影响[J]. 中华皮肤科杂志, 2022,55(11):990⁃995. doi: 10.35541/cjd.20210692.
|
[11] |
Cao Y, Gong Y, Liu L, et al. The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review[J]. J Appl Toxicol, 2017,37(12):1359⁃1369. doi: 10.1002/jat.3470.
|
[12] |
Medina⁃Leyte DJ, Domínguez⁃Pérez M, Mercado I, et al. Use of human umbilical vein endothelial cells (HUVEC) as a model to study cardiovascular disease: a review[J]. Applied Sciences, 2020,10(3):938. doi:10.3390/app10030938.
|
[13] |
Pang Z, Lu Y, Zhou G, et al. MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation[J]. Nucleic Acids Res, 2024:gkae253 [pii]. doi: 10.1093/nar/gkae253.
|
[14] |
Du W, Ren L, Hamblin MH, et al. Endothelial cell glucose metabolism and angiogenesis[J]. Biomedicines, 2021,9(2):147. doi: 10.3390/biomedicines9020147.
|
[15] |
Potente M, Carmeliet P. The link between angiogenesis and endothelial metabolism[J]. Annu Rev Physiol, 2017,79:43⁃66. doi: 10.1146/annurev⁃physiol⁃021115⁃105134.
|
[16] |
Falkenberg KD, Rohlenova K, Luo Y, et al. The metabolic engine of endothelial cells[J]. Nat Metab, 2019,1(10):937⁃946. doi: 10.1038/s42255⁃019⁃0117⁃9.
|
[17] |
Zou S, Wang X, Liu P, et al. Arginine metabolism and deprivation in cancer therapy[J]. Biomed Pharmacother, 2019,118:109210. doi: 10.1016/j.biopha.2019.109210.
|
[18] |
Oberkersch RE, Santoro MM. Role of amino acid metabolism in angiogenesis[J]. Vascul Pharmacol, 2019,112:17⁃23. doi: 10. 1016/j.vph.2018.11.001.
|
[19] |
Storch CH, Hoeger PH. Propranolol for infantile haemangiomas: insights into the molecular mechanisms of action[J]. Br J Dermatol, 2010,163(2):269⁃274. doi: 10.1111/j.1365⁃2133. 2010.09848.x.
|
[20] |
Zuccolo E, Bottino C, Diofano F, et al. Constitutive store⁃operated Ca2+ entry leads to enhanced nitric oxide production and proliferation in infantile hemangioma⁃derived endothelial colony⁃forming cells[J]. Stem Cells Dev, 2016,25(4):301⁃319. doi: 10.1089/scd.2015.0240.
|
[21] |
Chen CL, Hsu SC, Ann DK, et al. Arginine signaling and cancer metabolism[J]. Cancers (Basel), 2021,13(14):3541. doi: 10. 3390/cancers13143541.
|
[22] |
杨开颖, 陈思源, 吉毅. 婴儿血管瘤发病过程中的关键信号通路[J]. 国际皮肤性病学杂志, 2017,43(6):369⁃373. doi: 10. 3760/cma.j.issn.1673⁃4173.2017.06.014.
|
[23] |
Yeh CL, Pai MH, Li CC, et al. Effect of arginine on angiogenesis induced by human colon cancer: in vitro and in vivo studies[J]. J Nutr Biochem, 2010,21(6):538⁃543. doi: 10.1016/j.jnutbio.2009. 03.005.
|
[24] |
Bhutia YD, Ganapathy V. Glutamine transporters in mammalian cells and their functions in physiology and cancer[J]. Biochim Biophys Acta, 2016,1863(10):2531⁃2539. doi: 10.1016/j.bbamcr. 2015.12.017.
|
[25] |
Jin J, Byun JK, Choi YK, et al. Targeting glutamine metabolism as a therapeutic strategy for cancer[J]. Exp Mol Med, 2023,55(4):706⁃715. doi: 10.1038/s12276⁃023⁃00971⁃9.
|
[26] |
Matés JM, Di Paola FJ, Campos⁃Sandoval JA, et al. Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer[J]. Semin Cell Dev Biol, 2020,98:34⁃43. doi: 10.1016/j.semcdb.2019.05.012.
|
[27] |
Gwangwa MV, Joubert AM, Visagie MH. Effects of glutamine deprivation on oxidative stress and cell survival in breast cell lines[J]. Biol Res, 2019,52(1):15. doi: 10.1186/s40659⁃019⁃0224⁃9.
|
[28] |
Huang H, Vandekeere S, Kalucka J, et al. Role of glutamine and interlinked asparagine metabolism in vessel formation[J]. EMBO J, 2017,36(16):2334⁃2352. doi: 10.15252/embj.201695518.
|