| [1] | Netea MG, Joosten LA, van der Meer JW, et al. Immune defence against Candida fungal infections[J]. Nat Rev Immunol, 2015,15(10):630⁃642. doi: 10.1038/nri3897. | 
																													
																						| [2] | Noble SM, Gianetti BA, Witchley JN. Candida albicans cell⁃type switching and functional plasticity in the mammalian host[J]. Nat Rev Microbiol, 2017,15(2):96⁃108. doi: 10.1038/nrmicro. 2016.157. | 
																													
																						| [3] | Lu Y, Su C, Ray S, et al. CO2 signaling through the Ptc2⁃Ssn3 axis governs sustained hyphal development of Candida albicans by reducing Ume6 phosphorylation and degradation[J]. mBio, 2019,10(1):e02320⁃18. doi: 10.1128/mBio.02320⁃18. | 
																													
																						| [4] | Hall RA, De Sordi L, Maccallum DM, et al. CO2 acts as a signalling molecule in populations of the fungal pathogen Candida albicans[J]. PLoS Pathog, 2010,6(11):e1001193. doi: 10.1371/journal.ppat.1001193. | 
																													
																						| [5] | Biswas K, Morschhäuser J. The Mep2p ammonium permease controls nitrogen starvation⁃induced filamentous growth in Candida albicans[J]. Mol Microbiol, 2005,56(3):649⁃669. doi: 10.1111/j.1365⁃2958.2005.04576.x. | 
																													
																						| [6] | Feng Q, Summers E, Guo B, et al. Ras signaling is required for serum⁃induced hyphal differentiation in Candida albicans[J]. J Bacteriol, 1999,181(20):6339⁃6346. doi: 10.1128/JB.181.20. 6339⁃6346.1999. | 
																													
																						| [7] | Alvarez FJ, Konopka JB. Identification of an N⁃acetylglucosamine transporter that mediates hyphal induction in Candida albicans[J]. Mol Biol Cell, 2007,18(3):965⁃975. doi: 10.1091/mbc.e06⁃10⁃0931. | 
																													
																						| [8] | Ma Y, Galluzzi L, Zitvogel L, et al. Autophagy and cellular immune responses[J]. Immunity, 2013,39(2):211⁃227. doi: 10. 1016/j.immuni.2013.07.017. | 
																													
																						| [9] | Duan Z, Chen Q, Du L, et al. Phagocytosis of Candida albicans inhibits autophagic flux in macrophages[J]. Oxid Med Cell Longev, 2018,2018:4938649. doi: 10.1155/2018/4938649. | 
																													
																						| [10] | Lima JG, de Freitas Vinhas C, Gomes IN, et al. Phagocytosis is inhibited by autophagic induction in murine macrophages[J]. Biochem Biophys Res Commun, 2011,405(4):604⁃609. doi: 10. 1016/j.bbrc.2011.01.076. | 
																													
																						| [11] | Wu Y, Li D, Wang Y, et al. Pseudomonas aeruginosa promotes autophagy to suppress macrophage⁃mediated bacterial eradication[J]. Int Immunopharmacol, 2016,38:214⁃222. doi: 10. 1016/j.intimp.2016.04.044. | 
																													
																						| [12] | Zhu Y, Li H, Ding S, et al. Autophagy inhibition promotes phagocytosis of macrophage and protects mice from methicillin⁃resistant staphylococcus aureus pneumonia[J]. J Cell Biochem, 2018,119(6):4808⁃4814. doi: 10.1002/jcb.26677. | 
																													
																						| [13] | Bonilla DL, Bhattacharya A, Sha Y, et al. Autophagy regulates phagocytosis by modulating the expression of scavenger receptors[J]. Immunity, 2013,39(3):537⁃547. doi: 10.1016/j.immuni.2013. 08.026. | 
																													
																						| [14] | Wu Y, Li D, Wang Y, et al. Beta⁃Defensin 2 and 3 Promote Bacterial Clearance of Pseudomonas aeruginosa by Inhibiting Macrophage Autophagy through Downregulation of Early Growth Response Gene⁃1 and c⁃FOS[J]. Front Immunol, 2018,9:211. doi: 10.3389/fimmu.2018.00211. | 
																													
																						| [15] | Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)[J]. Autophagy, 2016,12(1):1⁃222. doi: 10.1080/1554 8627.2015.1100356. | 
																													
																						| [16] | Kanayama M, Inoue M, Danzaki K, et al. Autophagy enhances NF⁃κB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity[J]. Nat Commun, 2015,6:5779. doi: 10.1038/ncomms6779. | 
																													
																						| [17] | Nicola AM, Albuquerque P, Martinez LR, et al. Macrophage autophagy in immunity to Cryptococcus neoformans and Candida albicans[J]. Infect Immun, 2012,80(9):3065⁃3076. doi: 10.1128/ IAI.00358⁃12. | 
																													
																						| [18] | Fedele AO, Proud CG. Chloroquine and bafilomycin a mimic lysosomal storage disorders and impair mTORC1 signalling[J]. Biosci Rep, 2020,40(4). doi: 10.1042/BSR20200905. | 
																													
																						| [19] | Kong FJ, Wu JH, Sun SY, et al. The endoplasmic reticulum stress/autophagy pathway is involved in cholesterol⁃induced pancreatic β⁃cell injury[J]. Sci Rep, 2017,7:44746. doi: 10. 1038/srep44746. | 
																													
																						| [20] | Mauro⁃Lizcano M, Esteban⁃Martínez L, Seco E, et al. New method to assess mitophagy flux by flow cytometry[J]. Autophagy, 2015,11(5):833⁃843. doi: 10.1080/15548627.2015. 1034403. | 
																													
																						| [21] | Tam JM, Mansour MK, Acharya M, et al. The role of autophagy⁃related proteins in Candida albicans infections[J]. Pathogens, 2016,5(2):34. doi: 10.3390/pathogens5020034. |